Forme quadratique

Forme quadratique

En mathématiques, une forme quadratique est un polynôme homogène de degré deux avec un nombre quelconque de variables. Par exemple, la distance comprise entre deux points dans un espace euclidien à trois dimensions s'obtient en calculant la racine carrée d'une forme quadratique impliquant six variables qui sont les trois coordonnées de chacun des deux points.

Les formes quadratiques d'une, deux et trois variables sont données par les formules suivantes :

F(x) = ax^2\,
F(x,y) = ax^2 + by^2 + 2cxy\,
F(x,y,z) = ax^2 + by^2 + cz^2 + 2dxy + 2exz + 2fyz\,

L'archétype de forme quadratique est la forme \,x^2 + y^2 + z^2 sur \,\R^3 qui définit la structure euclidienne. C'est pourquoi la théorie des formes quadratiques utilise la terminologie de la géométrie (orthogonalité). La géométrie est un bon guide pour aborder cette théorie, malgré quelques pièges.

Les formes quadratiques interviennent dans de nombreux domaines des mathématiques :

Sommaire

Généralités

Formes quadratiques sur un espace vectoriel

Soit un espace vectoriel V sur un corps commutatif F.

À toute forme quadratique Q~:~V \to  F est associée une forme bilinéaire symétrique B~:~V \times V \to F définie par

\forall u,v \in V ~,~ B(u,v) = {1 \over 2} \left( Q(u+v)-Q(u)-Q(v) \right)

B est l'unique forme bilinéaire symétrique telle que \forall u \in V ~,~ Q(u) = B(u,u).

En effet, si \,u,v sont des vecteurs de V,

Q(u + v) = Q(u) + 2B(u,v) + Q(v)\,

donc l'expression nécessaire de la forme bilinéaire symétrique B en fonction de Q est :

B(u,v) = \frac{1}{2}\left(Q(u+v) - Q(u) - Q(v)\right)

C'est un exemple de polarisation d'une forme algébrique. Il existe alors une correspondance bijective entre les formes quadratiques sur V et les formes bilinéaires symétriques sur V. À partir d'une forme donnée, nous pouvons définir de manière unique l'autre forme.

Quelques autres propriétés des formes quadratiques :

Q(u+v) + Q(u-v) = 2Q(u) + 2Q(v)\,
Q(u+v) = Q(u) + Q(v)\,
  • Pour toute forme quadratique, il existe une base orthogonale, c'est-à-dire

une base \,(e_i)_{1\le i\le n} telle que \,B(e_i,e_j)=0 pour \,i\not=j. C'est une conséquence immédiate de la réduction de Gauss.

Exemples

Expression matricielle

Si V est de dimension n, et si \,(e_i)_{1\le i\le n} est une base de V, on associe à B la matrice symétrique B définie par \mathbf{B}_{ij}=B(e_i,e_j) p. La forme quadratique Q est alors donnée par

Q(u) = \mathbf{^Tu} \mathbf{Bu} = \sum_{i,j=1}^{n}B_{ij}u^i u^j

où les \,u^i sont les coordonnées de u dans cette base, et u la matrice colonne formée par ces coordonnées. On dit que B est la matrice de Q par rapport à la base.

Q(u) est un polynôme homogène de degré deux par rapport aux coordonnées de u, conformément à notre définition de départ.

Soit \,(e^{\prime}_i)_{1\le i\le n} une autre base de V, et soit \,P la matrice de passage exprimant les anciennes coordonnées en fonction des nouvelles. De la relation \,\mathbf{u}=P\mathbf{u^\prime} on tire \mathbf{B^\prime}={}^TP\mathbf{B}P pour la matrice de B dans la nouvelle base. On dit que B et B' sont congruentes.

Forme quadratique induite

Image réciproque

Somme directe orthogonal

Extension des scalaire

Orthogonalité et dégénérescence

Orthogonalité

Si W est un sous-espace vectoriel de V, l'orthogonal de W est le sous-espace


W^\perp = \{x\in V,\forall y\in W, B(x,y)= 0\}

Cette notion généralise l'orthogonalité dans les espaces euclidiens, mais il y a quelques pièges. Par exemple sur \,F\times F, la forme quadratique \,Q(x,y)=xy est non dégénérée, mais chacun des sous-espaces F\times\{0\} et \{0\}\times F est son propre orthogonal. Plus généralement, si Q est non dégénérée, on a bien \mathrm{dim}W+\mathrm{dim}W^\perp=\mathrm{dim}V, comme dans le cas euclidien. Mais l'intersection W\cap W^\perp n'est pas forcément réduite à zéro.

Radical, dégénérescence et rang

Le noyau d'une forme quadratique Q (on dit aussi radical) est par définition le sous-espace vectoriel

\mathrm{rad}(Q)=\{x\in V,\forall y\in V, B(x,y)=0\}

Cet espace est le noyau de l'application linéaire de V dans l'espace dual V* qui associe à x la forme linéaire y\mapsto B(x,y). Une forme quadratique est dite non dégénérée si rad(Q)=0, autrement dit si l'application linéaire ci-dessus est un isomorphisme.

Le rang de Q est par définition dim V - dim(rad(Q)). C'est aussi le rang de la matrice de Q par rapport à une base quelconque.

Isométries et similitudes

Isométries

Similitudes

Groupes liés aux formes quadratiques

Adjoint d'un endomorphisme

Isotropie

Vecteur isotrope

Sous-espace isotrope

Indice de Witt

Structure des formes quadratiques

Base orthogonale

Formes quadratiques hyperboliques

Décomposition de Witt

Groupe de Witt

Discriminant

Généralité

Soit q une forme quadratique et A sa matrice par rapport à une base de V. Si l'on effectue un changement de base de matrice Q, la matrice de q dans la nouvelle base sera \,A^\prime ={}^tQAQ. D'après les propriétés élémentaires des déterminants, \det A^\prime=(\det Q)^2\det A . Si q est non dégénérée, l'image du déterminant dans le groupe quotient K^\ast/(K^\ast)^2 ne dépend pas de la base. C'est cet élément que l'on appelle le discriminant de la forme quadratique. Si q est dégénérée, on convient que le discriminant est nul.

Exemples

  • Corps des complexes

Si K=\mathbb{C}, le quotient K^\ast/(K^\ast)^2 est réduit à l'élément neutre, et le discriminant est sans intérêt.

  • Corps des réels

Si K=\mathbb{R}, le quotient K^\ast/(K^\ast)^2 s'identifie à \{\pm 1\}, vu comme sous-groupe multiplicatif de \mathbb{R}^\ast. On peut donc parler de formes quadratiques à discriminant positif ou négatif. Par exemple, le discriminant de la forme quadratique ax2 + 2bxy + cy2 sur \mathbb{R}^2, supposée non dégénérée, est donnée par le signe de \,ac-b^2. S'il est positif, la forme est définie positive ou définie négative, s'il est négatif, la réduction de Gauss sera de la forme (ux+vy)^2-(u^\prime x+ v^\prime y)^2. On retrouve, ce qui n'est pas surprenant, la théorie de l'équation du second degré.

  • Corps finis

Si p est un nombre premier, et K le corps \mathbb{F}_p à p éléments, la théorie élémentaires des résidus quadratiques assure que K^\ast/(K^\ast)^2 est encore isomorphe au groupe à deux éléments.

Classification des formes quadratiques

On dira que deux formes quadratiques Q et Q' sont équivalentes s'il existe une application linéaire inversible \,\phi telle que \,Q^\prime=Q\circ\phi. Il revient au même de dire que leurs matrices dans une même base sont congruentes. Classer les formes quadratiques sur un espace vectoriel V, c'est :

  • déterminer les classes d'équivalence de la relation précédente (qui est clairement une relation d'équivalence)
  • déterminer les orbites de l'ensemble des formes quadratiques sous l'action du groupe linéaire
\,\mathrm{GL}(V) donnée par  (\phi,Q)\mapsto Q\circ\phi

(ce sont deux façons d'exprimer la même chose).

On a les résultats suivants.

  • Lorsque V est un espace vectoriel de dimension finie sur un corps F algébriquement clos (de caractéristique différente de 2) deux formes quadratiques sont équivalentes si et seulement si elles ont même rang. C'est une conséquence directe de la réduction de Gauss.
  • Lorsque V est un espace vectoriel de dimension finie sur \,\R,
deux formes quadratiques sont équivalentes si et seulement si elles ont même rang et même signature (loi d'inertie de Sylvester).

Deux formes quadratiques équivalentes ont même rang et même discriminant, mais la réciproque est loin d'être vraie en général.

Résumé des propriétés des formes quadratiques sur certains corps

Corps algébriquement clos

Corps des nombres réels

Corps fini

Géométrie des formes quadratriques

Théorème de Witt

Exemples d'orbites et de stabilisateurs

Cas de corps de caractéristique deux

La théorie des formes quadratiques de caractéristique deux possède une petite saveur différente, essentiellement parce que la division par 2 n'est pas possible. Il n'est plus vrai non plus que chaque forme quadratique est de la forme Q(u) = B(u,u) pour une forme bilinéaire symétrique B. En outre, même si B existe, elle n'est pas unique : puisque les formes alternées sont aussi symétriques en caractéristique deux, on peut ajouter toute forme alternée à B et obtenir la même forme quadratique.

Une définition plus générale d'une forme quadratique qui marche pour toute caractéristique est la suivante. Une forme quadratique d'un espace vectoriel V sur un corps F est comme une application Q : V \rightarrow  F telle que

Généralisations

Cas des formes quadratiques sur un module

On peut généraliser la notion de forme quadratique à des modules sur un anneau commutatif. Les formes quadratiques entières sont importantes en théorie des nombres et topologie.

Formes pseudoquadratiques

Liens internes

Références

  • M. Berger, Cours de Géométrie
  • J.P. Serre, Cours d'Arithmétique, Presses Universitaires de France 1970

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Forme quadratique de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Forme Quadratique — En mathématiques, une forme quadratique est un polynôme homogène de degré deux avec un nombre quelconque de variables. Par exemple, la distance comprise entre deux points dans un espace euclidien à trois dimensions s obtient en calculant la… …   Wikipédia en Français

  • forme quadratique — kvadratinis pavidalas statusas T sritis fizika atitikmenys: angl. quadratic form; quadric form vok. quadratische Form, f rus. квадратичная форма, f pranc. forme quadratique, f …   Fizikos terminų žodynas

  • Discriminant d'une forme quadratique, associée à une forme bilinéaire, dans une base B — ● Discriminant d une forme quadratique, associée à une forme bilinéaire, dans une base B déterminant de la matrice associée à la forme bilinéaire par rapport à la base B …   Encyclopédie Universelle

  • Décomposer une forme quadratique — ● Décomposer une forme quadratique l écrire comme somme de termes qui sont tous des carrés …   Encyclopédie Universelle

  • quadratique — [ k(w)adratik ] adj. • 1751; du lat. quadratus « carré » 1 ♦ Math. Qui est du second degré, élevé au carré. ⇒ rectangle (2o). Moyenne quadratique de n nombres : racine carrée du quotient par n de la somme de leurs carrés. 2 ♦ (1859) Minér. Se dit …   Encyclopédie Universelle

  • Forme Bilinéaire — En mathématiques, le concept de forme bilinéaire est une notion algébrique s appliquant à un espace vectoriel. Il correspond à une application qui, à deux vecteurs définis sur le même corps de nombres associe un scalaire. L étude des formes… …   Wikipédia en Français

  • Forme bilineaire — Forme bilinéaire En mathématiques, le concept de forme bilinéaire est une notion algébrique s appliquant à un espace vectoriel. Il correspond à une application qui, à deux vecteurs définis sur le même corps de nombres associe un scalaire. L étude …   Wikipédia en Français

  • FORME — L’histoire du concept de forme et des théories de la forme est des plus singulières. Nous vivons dans un monde constitué de formes naturelles. Celles ci sont omniprésentes dans notre environnement et dans les représentations que nous nous en… …   Encyclopédie Universelle

  • Forme Linéaire — Pour les articles homonymes, voir Forme. En algèbre linéaire, les formes linéaires désignent un type particulier d applications linéaires. L étude spécifique qu on leur accorde est motivée par le fait qu elles jouent un rôle primordial en… …   Wikipédia en Français

  • Forme Sesquilinéaire — En algèbre, une forme sesquilinéaire sur un espace vectoriel complexe E est une application de E × E dans , linéaire selon l une des variables et antilinéaire (aussi dit semi linéaire) par rapport à l autre variable. Elle possède donc une… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”