- Évolution (biologie)
-
Pour les articles homonymes, voir Évolution.
En biologie, l'évolution désigne la transformation des espèces vivantes qui se manifeste par des changements de leurs caractères génétiques au cours des générations. Les changements successifs peuvent aboutir à la formation de nouvelles espèces. La théorie de l'évolution est une explication scientifique de la diversification des formes de vie qui apparaissent dans la nature. Cette diversification depuis les premières formes de vie est à l'origine de la biodiversité actuelle. L’histoire des espèces peut ainsi être écrite et se représente sous la forme d'un arbre phylogénétique.
L'idée d'évolution est ancienne et peut déjà se trouver chez certains philosophes de l'Antiquité (Lucrèce, 98-54 av. J.-C., en particulier), mais ce n'est qu'à partir du XIXe siècle que des théories scientifiques proposant une explication du phénomène des espèces ont été développées. La théorie du transformisme de Lamarck a ouvert la voie. Puis, à partir de 1859 avec la publication de De l'origine des espèces par Charles Darwin[1], la théorie de l'évolution s'est imposée dans la communauté scientifique. Charles Darwin défend avec des observations détaillées la thèse que les espèces vivantes ne sont pas des catégories fixes mais se diversifient avec le temps, voire disparaissent[2]. Pour expliquer les changements qui s'imposent peu à peu au sein d'une population il propose l'idée de la sélection naturelle. Les espèces sont profondément conditionnées par leur milieu naturel, aujourd'hui appelé écosystème.
Avec la découverte de la génétique par Mendel la théorie de l'évolution s'est peu à peu affinée[3]. Depuis les années 1930, la théorie synthétique de l'évolution fait l'objet d'un large consensus scientifique sur ses fondements et ses principaux mécanismes[4]. Les recherches actuelles continuent de s'intéresser aux mécanismes qui permettent d'expliquer l'évolution[5]. Des processus découverts après 1950 comme celle de gène architecte, de coévolution et d'endosymbiose permettent de mieux saisir les mécanismes génétiques en action, d'appréhender l'évolution des espèces les unes par rapport aux autres ou de décrire plus précisément les différents rythmes de l'évolution.
L'évolution est causée, d'une part par la présence de variations parmi les traits héréditaires, tels que la couleur du plumage, d'une population d'individus lors des phases de reproductions avec l'apparition parfois de mutations, et d'autre part par divers mécanismes qui vont modifier la fréquence de certains traits héréditaires au sein de la population. Parmi ces mécanismes, la sélection naturelle désigne la différence de propagation entre les traits héréditaires causée par leur effet sur la survie et la reproduction des individus : si un certain trait héréditaire favorise les chances de survie ou la reproduction, il s'ensuit mécaniquement que la fréquence de ce trait augmente d'une génération à l'autre. Dans une population de taille finie, un trait peut également être propagé ou éliminé par le fait de fluctuations aléatoires (dérive génétique). À l'échelle des temps géologiques, l'évolution conduit à des changements morphologiques, anatomiques, physiologiques et comportementaux des espèces. L'histoire évolutive des lémuriformes sur l'île de Madagascar est un exemple frappant illustrant la théorie de l'évolution sur un écosystème précis.
La théorie de l'évolution est appliquée et étudiée dans des domaines aussi divers que l'agriculture, l'anthropologie, la biologie de la conservation, l'écologie, la médecine, la paléontologie, la philosophie, et la psychologie.
Histoire de la théorie de l'évolution
Article détaillé : Histoire de la pensée évolutionniste.Les hommes ont cherché l'origine de la diversité du vivant dès la période antique. L'idée d'évolution est déjà présente chez des philosophes grecs[6]et romains (Démocrite, Épicure, Lucrèce). Cependant Aristote, comme beaucoup d'autres, avait une conception fixiste du vivant. Cette vision est restée prédominante dans la pensée occidentale jusqu'au XVIIIe siècle. Les religions monothéistes ont diffusé cette idée fixiste. Les récits bibliques, en particulier ceux de la Genèse, affirment que toutes les espèces vivantes ont été créées telles quelles par Dieu. De plus ces religions confèrent à l'homme une place à part dans le vivant: il serait à l'image de Dieu et moralement supérieur à toutes les autres espèces[6].
Durant le Moyen Âge, les débats philosophiques en Europe occidentale sont limitées par la dominance du dogmatisme chrétien [7]. Les autorités religieuses condamnent fermement toute idée remettant en cause les écrits bibliques. Cependant l'idée d'évolution est défendue à la Renaissance par certains savants qui le paieront de leur vie[8] comme Jérôme Cardan[9], Giordano Bruno[10] et Giulio Cesare Vanini[11]. Au XVIIe siècle, le français Isaac La Peyrère prend connaissance de ces arguments à travers l'œuvre des Maimonïdes. Il publie en latin en 1655 Prae-Adamitae et invente la théorie préadamite : il considère qu'il a du y avoir deux créations, d'abord la création des Gentils, puis celle d'Adam, ancêtre des Juifs. L'opposition théologique à cette théorie est très forte et son œuvre est brulée, en public, à Paris, en 1656.
Dans le monde musulman l'idée d'évolution resurgit par intermittence. Au IXe siècle Al-Jahiz défend l'idée que non seulement les espèces évoluent au cours du temps, mais proposent aussi une première théorie cherchant à expliquer cette évolution[12]. Au XIIIe siècle, le philosophe Nasir ad-Din at-Tusi soutient la sélection des meilleurs et l'adaptation des espèces à leur environnement[13]. Ces écrits se sont heurtées au dogme de la genèse et ont été oubliées pendant des siècles.
Au début du XVIIIe siècle, la paléontologie et la découverte de fossiles de squelettes ne ressemblant à aucun squelette d'animaux vivants [14] ébranlent les idées fixistes. Des savants redécouvrent l'idée d'évolution comme Pierre Louis Moreau de Maupertuis avec son intérêt pour l’hérédité et Georges Louis Leclerc, comte de Buffon, naturaliste passionné qui transforma le Jardin des plantes en un centre de collection et d'étude. Pour concilier ces découvertes avec les textes bibliques, Georges Cuvier expose sa théorie catastrophiste selon laquelle il y aurait eu une succession de créations divines entrecoupées d'extinctions brutales au cours des temps géologiques[15]. Il admet ainsi que les espèces terrestres n'ont pas toujours été celles observées aujourd'hui, sans pour autant accepter l'évolution des espèces, et que les 6 000 ans estimés jusque là pour l'âge de la Terre sont trop courts pour y intégrer ces extinctions successives[16].
La première théorie véritablement scientifique d'une évolution des espèces vivantes est avancée par le naturaliste Jean-Baptiste Lamarck. Après un long travail de classification des espèces et sur la base d'une théorie physique des êtres vivant, Lamarck développe la théorie transformiste. Il considère que les espèces peuvent se transformer selon deux principes :
- La diversification, ou spécialisation, des êtres vivants en de multiples espèces, sous l'effet des circonstances variées auxquelles ils sont confrontés dans des milieux variés et auxquelles ils s'adaptent en modifiant leur comportement ou leurs organes pour répondre à leurs besoins, généralement désigné par « l'usage et le non-usage » ;
- la complexification croissante de l'organisation des êtres vivants sous l'effet de la dynamique interne propre à leur métabolisme.
La publication, en 1809, dans Philosophie zoologique, de sa théorie transformiste entraine de virulents débats au sein de l'Académie des sciences car elle entre en contradiction avec les idées en vigueur à l'époque et notamment le fixisme. Mais en fait Lamarck n'avance aucune théorie de l'hérédité (contrairement à ce que fera Darwin en 1868), il se contente de reprendre les idées admises sur ce point depuis Aristote. Malgré les critiques de Cuvier, qui devient son principal opposant, les idées transformistes reçoivent une adhésion croissante à partir de 1825 et rendent les naturalistes plus réceptifs aux théories évolutionnistes[17]
Charles Darwin publie en 1859 son livre De l'origine des espèces[18] où il expose une suite d'observations très détaillées et présente le mécanisme de la sélection naturelle pour expliquer ces observations. Cette théorie, qui entraine ce qu'il appelle "la descendance avec modification" des différentes espèces, considère que, étant donné que tous les individus d'une espèce diffèrent au moins légèrement, et qu'il nait plus d'individus que le milieu ne peut en nourrir, seuls les descendants des individus les mieux adaptés à la "lutte pour la vie", c'est-à-dire à la compétition pour l'appropriation des ressources rares, parviendront à engendrer une descendance (référence précise nécessaire). Les individus ainsi sélectionnés transmettant leurs caractères à leur descendance, les espèces s'adaptent en permanence à leur milieu. Il baptise sélection naturelle cette sélection des individus les mieux adaptés en opposition à la sélection artificielle que pratiquent les agriculteurs, jardiniers et éleveurs; cette dernière étant le socle expérimentale empirique sur lequel Darwin s'appuie pour développer sa théorie.
Darwin propose dans son ouvrage de 1868, une théorie qui explique la transmission des caractères acquis qui sera partiellement infirmée par divers études sur l'hérédité. August Weismann, à la fin du XIXe siècle, théorise la séparation stricte entre les cellules germinales (germen) et les cellules corporelles (soma), ce qui interdit la transmission des caractères acquis. La redécouverte des lois de Mendel à la fin du XIXe siècle et au début du XXe siècle bouleverse la compréhension des mécanismes de l'hérédité et donne naissance à la génétique. Elle est à l'origine de nouvelles méthodes dans l'étude de l'évolution, comme la génétique des populations.
Dans les années 1940, la Théorie synthétique de l'évolution, fondée entre autres par Theodosius Dobzhansky et Ernst Mayr, nait de l'articulation entre la théorie de la sélection naturelle Darwinienne et de la génétique mendeléienne. La découverte de l'ADN et la biologie moléculaire viennent parachever cet édifice scientifique. Depuis la biologie de l'évolution est intégrée à toutes les disciplines de la biologie et, en parallèle de son développement, contribue aussi bien à retracer l'histoire évolutive du vivant, qu'à trouver des remèdes aux maladies les plus complexes telles que le SIDA ou le cancer. Plus récemment, l'étude de l'évolution profite du développement de l'informatique et des progrès de la biologie moléculaire, notamment du séquençage du génome qui permet le développement de la phylogénie par un apport très important de données.
Évolution et espèces
Il existe de nombreuses espèces dans la nature ; les chats, les chiens, les baleines, les souris... tous les mammifères, mais aussi les arbres, les fleurs ou encore les bactéries. Certains types d'espèces, comme les dinosaures ou les mammouths ont disparu de la surface de la Terre. L'évolution est la théorie scientifique qui s'intéresse aux espèces et expliquent pourquoi elles apparaissent ou disparaissent. La notion d'espèce est importante pour bien comprendre l'évolution. Une espèce est une population dont les individus peuvent se reproduire et engendrer une descendance viable. Ainsi on distingue communément les roses des tulipes, les baleines des dauphins, communément car, à la différence des haricots ou des petit-pois, chacune de ces catégories est en fait un genre (biologie) regroupant de nombreuses espèces.
La science de classification des espèces s'appelle la taxinomie. En observant les différentes espèces on s'aperçoit que certaines sont plus proches les unes des autres; les hommes et les singes, les poules et les pigeons. Il existe différents critères permettant de séparer les espèces. Par exemple on peut distinguer les êtres vivants qui possèdent un squelette osseux, les vertébrés, de ceux qui n'en ont pas, puis distinguer spécifiquement ceux qui allaitent leurs enfants, les mammifères. Faire l'inventaire et la classification de toutes les espèces vivantes est un long travail car on découvre régulièrement de nouvelles espèces et les différences entre deux espèces peuvent être très subtiles.
De la même façon qu'une sœur et un frère se ressemblent et présentent certains des traits de leur parents, il est possible d'établir des liens de familiarités entre différentes espèces. En étudiant leur caractéristiques, il est possible de reconstituer l'histoire d'une espèce. Par exemple, les baleines sont des mammifères et non des poissons car elles respirent de l'air avec des poumons et allaitent leurs petits. De plus leur squelette présente des caractéristiques remarquables, en particulier la présence d'os correspondant au bassin (ceinture pelvienne). Ainsi l'étude de leur squelette, qui ressemble très fortement à ceux des quadrupèdes, permet de soutenir que les baleines auraient un mammifère terrestre pour ancêtre[19], pour plus de détails voir l'article Histoire évolutive des cétacés[20]. De plus, au niveau moléculaire toutes les espèces possèdent un code génétique. Plus les espèces sont proches les unes des autres plus leurs codes génétiques sont similaires. L'étude du génome permet donc des analyses très fines de l'évolution, notamment des cétacés[21].
Arguments en faveur de l'évolution
Stratégie de raisonnement
Si on arrive à établir un lien de parenté entre deux espèces différentes, alors cela veut dire qu'une espèce ancestrale s'est transformée en, au moins, une de ces deux espèces. Il y a donc bien eu évolution.
Un lien de parenté entre espèces fossiles ou actuelles peut être mis en évidence par le partage d'au moins un caractère homologue, c'est-à-dire provenant d'un ancêtre. Ces indices de parenté sont décelables au niveau de la morphologie, au niveau moléculaire et parfois même, pour des espèces très proches, au niveau du comportement.
- Utilisation des fossiles
Il est en général impossible d'affirmer qu'une espèce fossile est l'ancêtre d'une espèce actuelle, car il ne sera jamais garanti que l'espèce actuelle ne s'est pas différenciée à partir d'une autre espèce proche, mais qui n'aurait pas été découverte. En effet, la conservation de restes d'espèces éteintes est un événement relativement improbable surtout pour les périodes les plus anciennes. On peut seulement estimer les liens de parenté, avec les autres espèces déjà connues, actuelles ou fossiles. Par exemple le fossile de fleur le plus ancien a été daté de 140 millions d'années. Cet organe est donc apparu sur Terre, il y a au moins 140 millions d'années. Mais d'autres espèces proches, avec des fleurs, existaient aussi certainement à cette époque. Personne n'est capable d'affirmer laquelle de ces espèces est l'ancêtre des plantes à fleur actuelles. On ne cherchera que les relations de parenté, les relations d'ancêtre à descendant ne pouvant jamais être reconstituées.
L'âge d'une espèce fossile, en revanche, indique l'âge minimum d'apparition des caractères qu'elle possède. Il est alors possible de reconstruire l'histoire de l'évolution, en plaçant sur une échelle des temps l'apparition des différents caractères. Les fossiles nous indiquent que l'ordre d'apparition des innovations évolutives est tout à fait en accord avec l'idée d'une évolution, qui dans un schéma général, part de structures simples vers des structures plus complexes. C'est aussi en accord avec une origine aquatique des êtres vivants, puisque les espèces fossiles les plus anciennes vivaient dans l'eau.
Indices morphologiques
- les baleines, animaux adaptés à la vie aquatique gardent une trace de leurs ancêtres quadrupèdes par la présence d'os vestigials correspondant au bassin (ceinture pelvienne) ;
- En observant l'aile d'un oiseau ou d'une chauve-souris, on retrouve aisément la structure osseuse du membre antérieur de tout tétrapode ;
- les défenses à croissance continue des éléphants sont en fait homologues des incisives des autres mammifères, dont l'homme ;
- les appendices masticateurs des arthropodes sont à l'origine des appendices locomoteurs réduits (il en va de même apparemment pour les Onychophores) ;
- les membres des tétrapodes proviennent des nageoires de poissons ;
- dans le monde végétal, la présence d'une double membrane autour des plastes et la présence d'un ADN circulaire à l'intérieur de ceux-ci trahissent une origine endosymbiotique procaryote.
Indices moléculaires
- Le support de l'information héréditaire est toujours l'ADN pour l'ensemble du vivant ;
- Le code génétique, code de correspondance entre l'ADN et les protéines est quasiment le même chez tous les êtres vivants ;
- Le séquençage de l'ADN. fait apparaître de nombreuses régions étroitement proches donc apparentées (gènes homologues: paralogues ou orthologues) qui codent des protéines aux fonctions ou structures différentes mais assez proches (exemple : les gènes qui codent les hémoglobines, myoglobines...).
Indices comportementaux
Chez certaines espèces de Lacertidés américains du genre Cnemidophorus, ou lézards à queue en fouet, il n'existe plus que des femelles. Ces espèces pratiquent donc une reproduction asexuée. Cependant des simulacres d'accouplements persistent : pour se reproduire une femelle monte sur une autre dans un comportement similaire à celui des espèces sexuées. Ce comportement d'origine hormonale est à mettre en relation avec une origine récente de ces espèces parthénogénétiques[24].
Un exemple d'évolution à échelle de temps humaine : Podarcis sicula
Introduit en 1971 par l'équipe du professeur Eviatar Nevo sur l'île dalmate de Prod Mrcaru en mer Adriatique, le lézard Podarcis sicula connu en France sous le nom de « lézard des ruines », y a été abandonné à lui-même durant plus de trois décennies, l'accès à l'île ayant été interdit par les autorités yougoslaves, puis par les conflits liés à l'éclatement de ce pays. En 2004, une équipe scientifique dirigée par Duncan Irschick et Anthony Herrel put revenir sur l'île et découvrit que Podarcis sicula avait évolué en 33 ans, soit environ trente générations, de façon très significative. Le lézard a grandi, sa mâchoire est devenue plus puissante, et surtout il a changé de régime alimentaire : d'insectivore il est devenu herbivore, et des valves cæcales sont apparues au niveau des intestins, ce qui lui permet de digérer les herbes... Cette découverte confirme, s'il en était encore besoin, que l'évolution n'est pas une théorie parmi d'autres, mais un phénomène biologique concrètement observable, et pas seulement chez les virus, les bactéries ou les espèces domestiquées[25].
Méthodes d'étude de l'évolution
Systématique
Si l'on veut retranscrire les concepts en systématique, il faut considérer la théorie cladistique, selon laquelle les grades évolutifs (qui induisent une vision de l'évolution aujourd'hui obsolète [réf. nécessaire]) ne sont plus pris en compte, en faveur des clades[26].
La paléobiologie
Articles détaillés : Paléontologie et Paléogénétique.La paléobiologie, étude de la vie des temps passés, permet de reconstituer l'histoire des êtres vivants. Cette histoire donne aussi des indices sur les mécanismes évolutifs en jeu dans l'évolution des espèces. La paléontologie s'occupe plus particulièrement des restes fossiles des êtres vivants. La paléogénétique, science récente, s'intéresse au matériel génétique ayant survécu jusqu'à aujourd'hui[27]. Ces deux approches sont limitées par la dégradation du matériel biologique au cours du temps. Ainsi, les informations issues des restes sont d'autant plus rares que l'être vivant concerné est ancien. De plus, certaines conditions sont plus propices que d'autres à la conservation du matériel biologique. Ainsi, les environnements anoxiques ou très froids entravent la dégradation des restes. Les restes vivants sont donc lacunaires et sont bien souvent insuffisants pour retracer l'histoire évolutive du vivant.
L'analyse comparative des caractères
Articles détaillés : Génétique évolutive du développement et Phylogénie.Tous les êtres vivants actuels étant issus d'un même ancêtre commun, ils partagent des caractéristiques héritées de cet ancêtre. L'analyse des ressemblances entre êtres vivants donne de nombreuses informations sur leurs relations de parenté, et permet de retracer l'histoire évolutive des espèces. La phylogénie est la discipline scientifique qui cherche à retracer les relations entre êtres vivants actuels et fossiles à partir de l'analyse comparative des caractères morphologiques, physiologiques ou moléculaires. L'analyse comparative permet de retracer l'histoire évolutive des différents caractères dans les lignées du vivant. L'évolution des caractères ne suit pas nécessairement celle des espèces, certains caractères (dits convergents) peuvent être apparus plusieurs fois de manière indépendante dans différentes lignées.
L'évolution des caractères et des lignées peut être associée à des évènements géologiques ou biologiques marquant l'histoire de la Terre, ce qui permet de proposer des hypothèses sur les mécanismes à l'origine de l'évolution des espèces.
La nature des caractères pouvant être analysés est extrêmement diverse, et il peut s'agir aussi bien de caractères morphologiques (taille, forme ou volume de différentes structures), anatomiques (structure, organisation des organes), tissulaires, cellulaires ou moléculaires (séquences protéiques ou nucléiques). Ces différents caractères apportent des informations diverses et souvent complémentaires. Actuellement, les caractères moléculaires (en particulier les séquences d'ADN) sont privilégiées, du fait de leur universalité, de leur fiabilité et du faible coût des technologies associées. Ils ne peuvent cependant pas être utilisés lors de l'étude de fossiles pour lesquels seuls les caractères morphologiques sont en général informatifs.
La génétique des populations
Article détaillé : Génétique des populations.La modélisation
La modélisation en biologie de l'évolution se base sur les mécanismes de l'évolution mis en évidence pour mettre en place des modèles théoriques. Ces modèles peuvent produire des résultats qui dépendent des hypothèses de départ de ce modèle, ces résultats pouvant être comparés à des données réellement observées. On peut ainsi tester la capacité du modèle à refléter la réalité, et, dans une certaine mesure, la validité de la théorie sous-jacente à ce modèle.
Les modèles dépendent souvent de paramètres, lesquels ne peuvent pas toujours être déterminés a priori. La modélisation permet de comparer les résultats du modèles et ceux de la réalité pour de nombreuses valeurs différentes de ces paramètres, et ainsi déterminer quelles sont les combinaisons de paramètres qui permettent au modèle décrire au mieux la réalité. Ces paramètres correspondent souvent à des paramètres biologiques, et on peut ainsi estimer à partir du modèle certains paramètres biologiques difficile à mesurer. La justesse de l'estimation de ces paramètres dépend cependant de la validité du modèle, laquelle est parfois difficile à tester.
La modélisation permet enfin de prédire certaines évolutions à venir, en utilisant les données actuelles comme données de départ du modèle.
L'expérimentation
Article détaillé : Évolution expérimentale.L'évolution expérimentale est la branche de la biologie qui étudie l'évolution par de réelles expériences, à l'inverse de l'étude comparative des caractères, qui ne fait que regarder l'état actuel des êtres vivants. Les expériences consistent généralement en l'isolement d'une ou plusieurs espèces dans un milieu biologique contrôlé. On laisse alors ces espèces évoluer pendant un certain temps, en appliquant éventuellement des changements contrôlés de conditions environnementales. On compare enfin certaines caractéristiques des espèces avant et après la période d'évolution.
L'évolution expérimentale permet non seulement d'observer l'évolution en cours, mais aussi de vérifier certaines prédictions énoncées dans le cadre de la théorie de l'évolution, et tester l'importance relative de différents mécanismes évolutifs.
L'évolution expérimentale ne peut étudier que des caractères évoluant rapidement, et se limite donc à des organismes se reproduisant rapidement, notamment des virus ou des unicellulaires, mais aussi certains organismes à génération plus longue comme la drosophile ou certains rongeurs.
Un exemple : l'expérience de Luria et Delbrück.
Mécanismes de l'évolution
Article détaillé : Théorie synthétique de l'évolution.L'évolution des populations
Parce que les individus d'une population possèdent des caractères héritables différents, et que seule une partie de ces individus accède à la reproduction, les caractères les plus adaptés à l'environnement sont préférentiellement conservés par la sélection naturelle. De plus, le hasard de la reproduction sexuée rend partiellement aléatoire les caractères qui seront transmis, par effet de dérive génétique. Ainsi, la proportion des différents caractères d'une population varie d'une génération à l'autre, conduisant à l'évolution des populations.
L'apparition de nouveaux caractères
Cela se produit par mutation et recombinaison génétique, ou remaniement chromosomique. Mais cela ne se déroule que dans un individu, pas dans l'espèce entière. Il faut, pour que ce nouveau caractère se répande, l'effet de la sélection naturelle et/ou de la dérive génétique.
Variabilité des individus au sein des populations
La plupart des individus d'une espèce sont uniques et diffèrent les uns des autres. Ces différences sont observables à toutes les échelles, du point de vue morphologique jusqu'à l'échelle moléculaire. Cette diversité des populations a deux origines principales : les individus sont dissemblables parce qu'ils ne possèdent pas la même information génétique et parce qu'ils ont subi des influences environnementales différentes.
La diversité génétique se manifeste par des variations locales de la séquence d'ADN, formant différents variants de la même séquence appelés allèles. Cette variabilité a plusieurs origines. Des allèles peuvent être formés spontanément par mutation de la séquence d'ADN. Par ailleurs, la reproduction sexuée contribue à la diversité génétique des populations de deux manières : d'une part, la recombinaison génétique permet de diversifier les combinaisons d'allèles réunies sur un même chromosome. D'autre part, une partie du génome de chaque parent est sélectionnée aléatoirement pour former un nouvel individu, dont le génome est par conséquent unique.
La diversité issue de l'environnement s'acquiert tout au long de l'histoire de l'individu, depuis la formation des gamètes jusqu'à sa mort. L'environnement étant unique à chaque endroit et à chaque moment, il exerce des effets uniques sur chaque individu, et ce à toutes les échelles, de la morphologie jusqu'à la biologie moléculaire. Ainsi, deux individus possédant la même information génétique (c'est par exemple le cas pour les vrais jumeaux) sont tout de même différents. Ils peuvent notamment avoir une organisation et une expression différente de l'information génétique.
L'hérédité
Les êtres vivants sont capables de se reproduire, transmettant ainsi une partie de leurs caractères à leurs descendants. On distingue la reproduction asexuée, ne faisant intervenir qu'un individu, de la reproduction sexuée pendant laquelle deux individus mettent en commun une partie de leur matériel génétique, formant ainsi un individu génétiquement unique.
Les caractères génétiques, c'est-à-dire l'ensemble des séquences d'acide nucléiques d'un individu, ne sont pas tous transmis de la même manière. Lors de la reproduction asexuée, qui est une reproduction clonale, l'ensemble des séquences nucléiques sont copiées et l'information génétique contenue chez les deux descendants est alors identiques. En revanche, lors de la reproduction sexuée, il arrive fréquemment qu'une partie seulement du matériel génétique soit transmis. Chez les Métazoaires, les chromosomes sont fréquemment associés par paire, et seul un chromosome de chaque paire et de chaque parent est transmis à l'enfant. De plus, si les parents fournissent tous les deux la moitié du contenu nucléaire, le matériel cytoplasmique est souvent fournis par un seul des deux parents (la mère chez les mammifères). Ainsi, le matériel génétique contenu dans les organites semi-autonomes, tels que les chloroplastes et les mitochondries, n'est transmis que par une partie des individus de l'espèce (les femelles chez les mammifères).
La transmission des caractères acquis, une hypothèse non totalement rejetée
Article détaillé : Transmission des caractères acquis.La théorie synthétique de l'évolution, paradigme dominant actuel, se fonde sur un déterminisme génétique intégral et écarte donc toute transmission héréditaire de caractères acquis au cours de la vie de l'individu. Néanmoins de plus en plus de travaux scientifiques remettent en cause ce modèle et rétablissent pour partie l'idée d'une transmission héréditaire de caractères acquis que défendait le lamarckisme[28].
Tout d'abord, certains caractères dits épigénétiques concernent la structure et l'organisation des génomes sont transmis par les parents en même temps que les molécules d'acide nucléique elles-mêmes. De plus, la mère fournit l'environnement cytoplasmique de la cellule-oeuf du descendant, et transmet ainsi un certain nombre de caractéristiques cellulaires à l'enfant. Des modifications épigénétiques conservées dans la lignée germinale sont désormais décrites chez plusieurs espèces. Chez les plantes il existe une corrélation entre le niveau d'expression d'un gène et sa méthylation. Pareillement, chez les mammifères nous témoignons de la méthylation d'une séquence transposable qui est insérée à proximité d'un gène particulier. Le degré de méthylation d'un transposon pouvant enfin moduler l'expression du gène dans lequel il s'est inséré[29]. L'étude de l'épigénétique, longtemps délaissée, connait un grand essor depuis la fin du séquençage de nombreux génomes, dont celui de l'homme.
Ainsi, Une étude de 2009 du MIT affirme mettre en évidence une hérédité de certains caractères acquis chez des rongeurs[30]. Par ailleurs, l’obésité serait non pas uniquement un effet direct touchant les individus atteints eux-mêmes mais également un effet transgénérationnel. Des données chez l'homme et chez l'animal semblent montrer que les effets d'une sous-alimentation subies par des individus pourraient en effet être transmises aux descendants.
La dérive génétique
Article détaillé : dérive génétique.Lors de la reproduction sexuée, la transmission des caractères (notamment des allèles) comporte une grande part de hasard due à la recombinaison homologue, et au brassage génétique. Ainsi, on observe une variation aléatoire des fréquences alléliques d'une génération à l'autre, appelée dérive génétique. La dérive génétique génère donc une composante aléatoire dans l'évolution des populations. Ainsi, deux populations d'une même espèce n'échangeant pas de matériel génétique vont diverger jusqu'à former, si le temps d'isolement génétique est suffisant, deux espèces différentes. La dérive génétique est donc un des moteurs de la spéciation.
L'effet de la dérive génétique est particulièrement visible lorsqu'un faible nombre d'individus est à l'origine d'une population beaucoup plus nombreuse. C'est le cas lorsque se forme un goulot d'étranglement c'est-à-dire qu'une population est décimée et se reconstitue, ou lorsque quelques individus d'une population migrent pour aller coloniser un nouvel espace et former une nouvelle population (effet fondateur). Lorsqu'un tel évènement se produit, un allèle même faiblement représenté dans la population de départ peut se retrouver en forte proportion dans la population nouvellement formée sous le simple effet d'un hasard dans le tirage des individus à l'origine de la nouvelle population. Inversement, un allèle fortement représenté peut ne pas être tiré, et disparaît de la nouvelle population. Par ailleurs, la formation d'une nouvelle population à partir d'un faible nombre d'individu a pour effet d'augmenter la consanguinité dans la population et augmente le pourcentage d'homozygotie, ce qui fragilise la population.
La sélection naturelle
Article détaillé : Sélection naturelle.Dans la très grande majorité des espèces, le nombre de cellules-œuf produits est bien plus grand que le nombre d'individus arrivant à l'âge de la maturité sexuelle et parmi ceux-ci, une partie seulement accède à la reproduction. Ainsi, seule une partie des individus formés se reproduit à la génération suivante. Il existe donc une sélection des individus perpétuant l'espèce, seuls les individus n'étant pas éliminé par les conditions environnementales pouvant se reproduire. Cette sélection a été baptisée sélection naturelle.
Comme il existe une variabilité au sein des espèces, les individus possédant des caractères différents, et qu'une partie de ces caractères sont héréditaires, les caractères permettant à l'individu de survivre et de mieux se reproduire seront préférentiellement transmis à la descendance, par rapport aux autres caractères. Ainsi la proportion des caractères au sein des espèces évolue au cours du temps.
La sélection naturelle peut prendre des formes très variées. La sélection utilitaire est une élimination des individus les moins capables de survivre et les moins féconds, alors que la sélection sexuelle conserve préférentiellement les individus les plus aptes à rencontrer un partenaire sexuel. Bien que ces sélections soient complémentaires, on observe souvent des conflits, chaque forme de sélection pouvant favoriser l'évolution d'un caractère dans un sens différent.
Il est parfois observé une sélection d'individus qui favorisent la survie ou la reproduction d'individus qui leur sont ou non apparentés, comme c'est le cas chez les insectes eusociaux ou lorsqu'un individu se sacrifie pour permettre la survie de son groupe ou de sa descendance. En sociobiologie, ces comportements altruistes s'expliquent notamment par les théories controversées de la sélection de parentèle, de la sélection de groupe et de l'altruisme réciproque. La sélection de parentèle prédit qu'il peut être plus avantageux pour un individu de favoriser beaucoup la reproduction d'un individu apparenté (donc avec lequel il partage des caractères) que de se reproduire un peu ou pas du tout, la sélection de groupe repose sur le même principe mais du point de vue du groupe et pourrait expliquer certains actes chez l'homme comme les guerres ou la xénophobie, l'altruisme réciproque se penche sur les cas d'altruisme entre individus non-apparentés et induit une contribution réciproque dont l'aide donnée en retour peut être différé dans le temps.
Enfin, la sélection artificielle n'est qu'une forme de sélection naturelle exercée par l'homme.
Conséquences évolutives
Adaptation des espèces
Articles détaillés : Adaptation et Neutralisme.En conséquence de la sélection naturelle, les espèces conservent préférentiellement les caractères les plus adaptés à leur environnement, et sont donc de mieux en mieux adaptées à leur environnement. Les pressions de sélection en jeux dans cette adaptation sont nombreuses et concernent tous les aspects de l'environnement, des contraintes physiques jusqu'aux espèces biologiques interagissantes.
L'adaptation de plusieurs espèces différentes sous l'effet des mêmes pressions environnementales peut conduire à l'apparition répétée et indépendante du même caractère adaptatif chez ces espèces, par un phénomène de convergence évolutive. Par exemple, chez les mammifères les cétacés et les siréniens ont tout deux développé des nageoires, de manière indépendante. L'évolution de ces nageoires montre une adaptation convergente à la vie aquatique.
Cependant, l'effet de la sélection naturelle est réduit par celui de la dérive génétique. Ainsi, un caractère avantageux pourra ne pas être sélectionné à cause de l'inertie donnée par la dérive.
Apparition et disparition des espèces
Articles détaillés : Spéciation et Extinction des espèces.L'évolution d'une population sous l'effet du hasard et des contraintes environnementales peut aboutir à la disparition de la population et éventuellement de l'espèce à laquelle elle appartient. Inversement, deux populations peuvent s'individualiser au sein d'une même espèce jusqu'à former deux espèces distinctes par un processus nommé spéciation.
Controverses sur les mécanismes de l'évolution
L'évolution et ses mécanismes sont encore largement étudiés aujourd'hui, et de nombreux points sur les mécanismes de l'évolution ne sont pas éclaircis. Certaines questions déjà soulevées par Charles Darwin n'ont d'ailleurs toujours pas de réponse certaine.
Une des grandes questions de la théorie de l'évolution est l'origine des rangs taxinomiques supérieurs à celui de l'espèce. En outre, la manière dont sont apparus la majorité les 33 embranchements animaux, issus de l'explosion cambrienne, pose encore problème. Ainsi, la théorie gradualiste estime que les changements interviennent de manière progressive au cours de l'évolution, alors que la théorie des équilibres ponctués, formulée par Stephen Jay Gould et Niles Eldredge défend qu'il existe des sauts évolutifs majeurs. Selon cette théorie, le mécanisme d'évolution est tantôt accéléré tantôt ralenti, voire pratiquement nul durant de longues périodes[31]. Or au Cambrien, les paléontologues s'accordent à reconnaître des changements écologiques majeurs[32] qui pourraient selon cette théorie être à l'origine de l'apparition d'organismes appartenant aux clades actuels. De plus l'absence de fossile durant presque 100 millions d'années avant les faunes de Burgess et la rareté des sites fossilifères précambriens suggèrent l'existence de lignées fantômes précédant l'explosion cambrienne. Les formes de vie auxquelles appartiennent les animaux de Burgess n'auraient tout simplement pas été retrouvées à l'état fossile durant de longues périodes[33].
La transmission des caractères acquis, complètement délaissée depuis la découverte des lois de l'hérédité, est réactualisée par la découverte des phénomènes épigénétiques. Dès lors, l'importance de cette transmission de caractères non hérités des parents dans l'évolution des espèces doit se poser. Cependant, notre connaissance des mécanismes épigénétiques est encore trop faible pour pouvoir répondre à cette question. En outre, peu d'études sur le rôle de l'épigénétique dans l'évolution ont été réalisées à l'heure actuelle.
Il a été longtemps admis que l'évolution s'accompagnait d'un accroissement de la complexité des êtres vivants. Cependant, cette idée, largement influencée par l'anthropocentrisme, est fortement débattue aujourd'hui. La complexité n'ayant pas de définition précise à l'heure actuelle, il est difficile de vérifier une éventuelle augmentation de complexité. Par ailleurs, lorsque cette idée est admise, les origines de cette augmentation de complexité sont, elles aussi, source de controverse. En fait, tout cela à déjà été clairement expliqué par Lamarck.
Histoire évolutive du vivant
L'origine de la Vie se situerait vers - 3,8 milliards d'années. Il s'agissait probablement d'organismes procaryotes unicellulaires. On suppose un ancêtre unique à tous les êtres vivants (LUCA). À partir de cet ancêtre se sont diversifiées les différentes formes de Vie.
Articles détaillés : Histoire évolutive du vivant et Arbre phylogénétique du vivant.Évolution et sociétés humaines
Évolution et agriculture
Article détaillé : Sélection artificielle.L'homme a su très vite utiliser la variabilité des populations à son profit : l'évolution dirigée par l'homme, ou sélection artificielle, à cause de la sélection par les éleveurs et les cultivateurs, se produit depuis des millénaires. Il avait été remarqué depuis longtemps que les animaux d'élevage héritaient, dans une certaine mesure, de caractéristiques de leurs parents et nul n'aurait songé à utiliser ses bêtes les plus malingres pour la reproduction. D'ailleurs, Darwin utilise de nombreuses observations issues de la sélection des plantes et des animaux en agriculture pour étayer ses idées. Ainsi, l'homme peut créer une sélection dite artificielle sur son environnement, volontairement pour des raisons économiques, ou involontairement via la pression de chasse, cueillette ou pêche)[34].
Évolution et informatique
Article détaillé : Algorithme évolutionniste.L'efficacité du processus de sélection naturelle a inspiré la création d'algorithmes évolutionnistes (comme les algorithmes génétiques) en informatique. Ces algorithmes heuristiques modélisent plusieurs caractéristiques de l'évolution biologique (en particulier les mutations et les recombinaisons) pour trouver une solution satisfaisante à un problème trop complexe pour être abordé par d'autres méthodes.
Eugénisme
Articles détaillés : Darwinisme social et Eugénisme.Article détaillé : Évolutionnisme (anthropologie).La pensée évolutionniste s'est notamment propagée au sein de l'anthropologie évolutionniste au XIXe siècle. Pour les anthropologues de cette époque, l'espèce humaine ne fait qu'une, et donc, chaque société suit la même évolution, qui commence à l'état de « primitif » pour arriver jusqu'au modèle de la civilisation occidentale. Cette théorie a été très fortement remise en question. En effet, elle ne correspond pas à la réalité historique observée (les civilisations suivent des « chemins » divergents, ne poursuivent pas les mêmes « objectifs », et la civilisation occidentale, qui devrait pourtant constituer le stade ultime de l'évolution, continue pourtant à vivre de profondes mutations.) et est douteuse d'un point de vue éthique (considérant la société occidentale comme l'aboutissement ultime de la civilisation). À l'inverse de ce qui était pratiqué jusqu'au milieu du XXe siècle, les approches modernes de l'anthropologie évolutionniste privilégient une méthodologie précise (confrontant des sources multiples, s'inspirant des outils d'analyse quantitative des sciences sociales, tentant de se départir de l'ethnocentrisme) et s'appuie sur des théories plus élaborées que l'évolutionnisme simpliste des débuts. Théories inspirées non seulement par la biologie de l'évolution moderne mais aussi par la modélisation mathématique et informatique et parfois enrichies par les connaissances contemporaines en psychologie.
La psychologie évolutionniste
Article détaillé : Psychologie évolutionniste.L'application des principes de l'évolution (notamment de concepts comme les caractères adaptatifs, la pression de sélection, etc.) en psychologie a donné naissance à un courant baptisé psychologie évolutionniste. Même si Darwin avait déjà émis l'idée que la sélection naturelle a pu façonner aussi bien des caractères anatomiques que psychologiques, cette discipline s'est véritablement formalisée au début des années 1990 dans le cadre conceptuel des sciences cognitives. Depuis, la psychologie évolutionniste est au centre d'une intense controverse scientifique qui tient à de multiples raisons : difficulté méthodologique à établir une histoire évolutive des comportements qui ne sont pas des objets matériels, résistance intellectuelle à envisager l'esprit humain comme en partie déterminé par l'évolution, utilisation simpliste et abusive des théories évolutionnistes, médiatisation et déformation auprès du grand public des problématiques scientifiques... Dans le milieu scientifique toutefois, la psychologie évolutionniste fait désormais partie des paradigmes scientifiques valides.
Évolution et religions
Critiques de la théorie synthétique de l'évolution
Article détaillé : Historique des critiques des théories de l'évolution.Elles se répartissent en trois origines, parfois combinées :
- Critiques idéologiques.
- Critiques religieuses (créationnisme et intelligent design).
Du fait, entre autres, de ses implications sur l'origine de l'humanité, l'évolution a été, et reste toujours, mal comprise et/ou, parfois, mal admise hors de la communauté scientifique. Dans les sociétés occidentales, la théorie de l'évolution se heurte à une vive opposition de la part de certains milieux religieux fondamentalistes, notamment pour son incompatibilité avec une interprétation littérale de la Bible. Ses détracteurs se basent sur des analyses pseudo-scientifiques ou religieuses pour contredire l'idée même d'évolution des espèces ou la théorie de la sélection naturelle.
La théorie évolutionniste est-elle compatible avec la croyance en Dieu ? En fait, Ernst Mayr dit à ce sujet : « Il me semble évident que Darwin a perdu la foi un an sinon deux, avant de formuler sa théorie de la sélection naturelle (sur laquelle il a sans doute travaillé plus de dix ans). Par conséquent, il n'est pas fondé d'avancer que la biologie et l'adhésion à la théorie de la sélection naturelle risquent de vous éloigner de Dieu.[35]»
Le biologiste Richard Dawkins, dans son ouvrage Pour en finir avec Dieu (2008), pense que la sélection naturelle est « supérieure » à l'« hypothèse de Dieu » qu'il qualifie d'« improbabilité statistique », et défend l'athéisme.
Le biologiste Kenneth R. Miller (en) estime que la pensée évolutionniste n'est pas forcément incompatible avec la foi en un Dieu[36]. Pour lui les écrits de la Bible sont des métaphores.
L'évolution est encore aujourd'hui rejetée par certains milieux religieux, tenants du créationnisme, surtout protestants et musulmans.
La position de l'Église Catholique sur ce sujet est plus nuancée, tout en maintenant l'innerance de la Bible[37], « aujourd’hui, près d’un demi-siècle après la parution de l’Encyclique (Humani generis-1950), de nouvelles connaissances (la) conduisent à reconnaître dans la théorie de l’évolution plus qu’une hypothèse ». Elle déclare que Dieu est le seul créateur, qu'Il a créé le monde par amour, mais que l'esprit ne peut pas être le fruit d'une évolution de la matière[38].
Aspects politiques et judiciaires
Les polémiques ont débordé, depuis les années 1990, le simple cadre du débat public, notamment aux États-Unis.
Dans certains États, les tenants du créationnisme ont essayé de rendre obligatoire son enseignement dans les écoles publiques, en tant que « théorie scientifique concurrente » de celle de l'évolution. Cependant ces mesures ont été déclarés anticonstitutionnelles vis-à-vis du premier amendement sur la liberté d'expression, du fait du caractère religieux de cette théorie. Devant ces tentatives, des scientifiques ont ironiquement demandé à ce que soit aussi enseigné le pastafarisme (qui a été inventé à cette occasion).
Un nouveau concept est apparu dans la mouvance créationniste, baptisé dessein intelligent (« Intelligent Design »), qui affirme que « certaines caractéristiques de l'Univers et du monde vivant sont mieux expliquées par une cause intelligente, plutôt que par des processus aléatoires tels que la sélection naturelle[39] ». Cette thèse est présentée comme une théorie appuyée par des travaux scientifiques, et ne nie pas l'existence de tout phénomène évolutif. La justice américaine, s'appuyant sur les travaux scientifiques, a cependant jugé (voir Kitzmiller v. Dover Area School) que cette thèse était de nature religieuse et non scientifique, et que les promoteurs de l’Intelligent Design n'explicitaient pas cette « cause intelligente » afin de contourner le problème juridique et d'échapper au qualificatif religieux. D'autres groupes utilisent les arguments de l’Intelligent Design, avec diverses attributions pour la « cause intelligente », par exemple des extraterrestres.
Notes et références
- Effects of the increased Use and Disuse of Parts, as controlled by Natural Selection », The Origin of Species. 6th edition, p. 108, John Murray, 1872. Consulté le 2007-12-28 Darwin, Charles, «
- Darwin n'utilise pas le mot évolution dans son œuvre, puisque ce terme n'est introduit que dans les années 1870. Cf. Gould (1997) : 33-37, Laurent (2001) : 17.
- (en) Peter J. Bowler, The Mendelian Revolution: The Emergence of Hereditarian Concepts in Modern Science and Society, Baltimore, Johns Hopkins University Press, 1989, 1re éd. (ISBN 978-0-8018-3888-0) (LCCN 89030914)
- Kutschera U, Niklas K, « The modern theory of biological evolution: an expanded synthesis », dans Naturwissenschaften, vol. 91, no 6, 2004, p. 255–76 [lien PMID, lien DOI]
- Stephen Jay Gould et Richard Dawkins sur l'intérêt d'introduire la notion d'équilibres ponctués pour décrire le rythme de l'évolution Comme souvent dans le monde scientifiques, les débats y sont nombreux comme la controverse ayant opposé
- Barbara Cassin & al., L'animal dans l'Antiquité [lire en ligne], Centre National de Recherche Scientifique, éd. Vrin, 1997, 618 p., (ISBN 978-2-7116-1323-6).
- ISBN 978-2-7298-3100-4). Jean Chaline, Quoi de neuf depuis Darwin ?, éd. Ellipses, 2006 (
- Joseph L. Graves, The Emperor's New Clothes: Biological Theories of Race at the Millennium, Newark, NJ: Rutgers University PressGraves, 2003, p. 25.
- Jérôme Cardan, 1551, De Subtilitate Rerum
- singes, faisait valoir qu'il n'était pas crédible que les juifs et les éthiopiens puissent avoir le même ancêtre il y a 6000 ans, et que par conséquent soit Dieu a créé plusieurs lignées différentes, soit les africains sont descendants d'homme préadamique. En 1591 Giodano Bruno est mort brulé pour avoir affirmé que l'homme est parent des
- Giulio Cesare Vanini est brûlé vif en 1619 pour avoir notamment déclaré que l'homme et le singe pouvaient être des parents.
- Al-Jahiz And the Rise of Biological Evolutionism", Londres. Mehmet Bayrakdar (The Islamic Quarterly Third Quarter, 1983). "
- Farid Alakbarli, « A 13th-Century Darwin? », dans Azerbaijan International, vol. 9.2, 2001, p. 48-49
- Histoire de la paléontologie, Darwin et Théorie de l'Evolution, Géopolis.fr, (page consultée le 4 juillet 2008). Laurent Dubois, [PDF]
- Éléments de théorie de l'évolution » sur http://www.colvir.net/prof/serge.lapierre/index.html. Consulté le 19 octobre 2008 Lapierre, S., «
- Éléments de théorie de l'évolution, Collège de Bois de Boulogne - Département de philosophie, (page consultée le 25 octobre 2008). Serge Lapierre,
- lire en ligne], n°7 - Novembre 2002, mis en ligne le 6 mars 2006. Consulté le 7 juillet 2008. Hélène Blais, « Lamarck, genèse et enjeux du transformisme, 1770-1830 », La Revue pour l’histoire du CNRS [
- Darwin, C., De l'Origine des espèces, Flammarion, 1859, 1997
- [1] Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls, J. G. M. Thewissen, E. M. Williams, L. J. Roe & S. T. Hussain, Nature, 2001
- Whales, whaling, and ocean ecosystems, James A. Estes
- (en) Mitsuru Shimamura et et al., « Molecular evidence from retroposons that whales form a clade within even-toed ungulates. », dans Nature, vol. 388, 14 août 1997, p. 666-670 [résumé (page consultée le 20 janvier 2010)]
- L. Bejder, B.K. Hall, « Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss », dans Evol. Dev., vol. 6, no 4, Nov.-Dev. 2002, p. 445-58.
- (en)Vestigials Organs, A Snake—With Legs ! American Museum of Natural History Site du muséum d'histoire naturelle américain.
- Serotonergic modulation of male-like pseudocopulatory behavior in the parthenogenetic whiptail lizard, Cnemidophorus uniparens Brian George Dias et David Crews Hormones and Behavior Volume 50, Issue 3, Septembre 2006, 401-409.
- (en)PNAS, vol. 105, n°12, pages 4792-4795 (25 mars 2008). Voir site : [PDF]
- W. Hennig, Phylogenetic Systematics, Illinois University Press, 1966, traduit par D. Dwight Davis & R. Zangerl.
- Eva-Maria Geigt, « L'émergence de la paléogénétique », dans Biofutur, no 164, février 1997, p. 28-34 (ISSN 0294-3506)
- La théorie de l'évolution en évolution ? Hominidés.com
- Claudine Junien, « Obésité et diabète de type 2 : L'hypothèse de la transmission épigénétique », dans Cahiers de nutrition et de diététique, vol. 37, no 4, 2002, p. 261-272 (ISSN 0007-9960) [texte intégral (page consultée le 11/03/2009)]
- http://www.technologyreview.com/biomedicine/22061/
- Stephen Jay Gould, La Structure de la théorie de l'évolution, Éditions Gallimard, 2006.
- Landing, E.; MacGabhann, B. �N. A. (2009). "First evidence for Cambrian glaciation provided by sections in Avalonian New Brunswick and Ireland: Additional data for Avalon–Gondwana separation by the earliest Palaeozoic". Palaeogeography, Palaeoclimatology, Palaeoecology
- Hors-série Science et vie, Mondes disparus.
- Lire l'article) Chris T. Darimonta et al. ; Human predators outpace other agents of trait change in the wild ; Ed : Gretchen C. Daily, Stanford University, Stanford, CA, PNAS, approuvé le 21 nov 2008 (reçu pour relecture le 15 septembre 2008) (
- ISBN 978-2-8041-2084-9 p.417 Biologie Campbell, De Boeck Université
- Kenneth Miller À la recherche du Dieu de Darwin, édition Sciences et quête de sens, 2000
- http://www.vatican.va/roman_curia/congregations/cfaith/pcb_documents/rc_con_cfaith_doc_19480116_fonti-pentateuco_fr.html
- Intervention du Pape Jean-Paul II devant l'Académie Pontificale des Sciences le 22 octobre 1996.
- « The theory of intelligent design [...] holds that certain features of the universe and of living things are best explained by an intelligent cause rather than an undirected process such as natural selection » — Intelligent Design Network, Inc.
Voir aussi
Ouvrages sur le sujet
Lorsqu'il y a deux dates, la première est celle de la première parution, dans la langue d'origine.
- Brondex, F. (1999) Évolution : synthèse des faits et théories, Dunod.
- Buican, D. (1989) La Révolution de l'évolution, PUF.
- Buican, D. (1997) L'Évolution et les théories évolutionnistes, Masson.
- Buican, D. (2008) L'odyssée de l'évolution, Ellipses
- Chapouthier, G. (2001) L'homme, ce singe en mosaïque, Odile Jacob
- Combes, C. (2006) Darwin, dessine-moi les hommes
- Darwin, C. (1997, éd. or. 1859) L'Origine des espèces, Flammarion.
- Charles Darwin. Origines - Lettres choisies 1828-1859 (2009), introduction et édition française dirigée par Dominique Lecourt, préface S. J. Gould, éditions Bayard, (ISBN 978-2-227-47843-5).
- David, P. & Samadi, S. (2000) La Théorie de l'évolution, Flammarion.
- Dawkins, R. (1982) The Extended Phenotype, Oxford University Press.
- Dawkins, R. (1986, 1989) L'Horloger aveugle, Éditions Robert Laffont.
- Dawkins, R. (1996) Climbing Mount Improbable, Norton (anglophone).
- Dawkins, R. (1976, 1996) Le Gène égoïste, Odile Jacob.
- Dennett, D. (2000) Darwin est-il dangereux ?, Odile Jacob.
- Devillers, C. & Tintant, H. (1996) Questions sur la théorie de l'évolution, PUF.
- Dorléans, P. (2003) Il était une fois l'évolution, Ellipses.
- Futuyma, D.J (1997) Evolutionary Biology, Sinauer Associates.
- Gould, S. J. (1982) Le Pouce du panda, Grasset.
- Gould, S. J. (1991) La Vie est belle, Le Seuil.
- Gould, S. J. (1997) L'Éventail du vivant, Le Seuil.
- Gould, S. J. (1997). Darwin et les grandes énigmes de la vie. Réflexions sur l'histoire naturelle. 1, S 43, Seuil (Paris), collection Point Science : 311 p.
- Gould, S. J. (2000) Et Dieu dit : Que Darwin soit ! : Science et religion, enfin la paix ?, préface de D. Lecourt, Le Seuil.
- Gould, S. J. (2002) The structure of evolutionary theory, Harvard University Press (anglophone).
- Grasset P. P. (1973) L'Évolution du vivant, matériaux pour une théorie transformiste, Albin Michel.
- Grimoult, C. (2000) Histoire de l'évolutionnisme contemporain en France (1945-1995), Genève, Droz.
- Grimoult, C.(2001) L'évolution biologique en France. Une révolution scientifique, politique et culturelle, Genève, Droz.
- Jacob, F. (1981) Le Jeu des possibles, Fayard.
- Kropotkine, P (2001, éd. or. 1902) L'entraide : un facteur de l'évolution, Ecosociété.
- Laurent, G. (2001). La Naissance du transformisme. Lamarck entre Linné et Darwin, Vuibert (Paris) et ADAPT (Paris) : 151 p. (ISBN 978-2-7117-5348-2)
- Dominique Lecourt, (1992, 3e éd. « Quadrige » 1998), L’Amérique entre la Bible et Darwin, suivi de Intelligent design : science, morale et politique, PUF.
- Lecourt, D. dir. (1999, 4e réed. « Quadrige » 2006), Dictionnaire d’histoire et philosophie des sciences, PUF.
- Le Guyader, H., dir. (1998) L'évolution, Belin/Pour la Science.
- Le Guyader, H. et Lecointre, G., Classification phylogénétique du vivant, Belin (Paris) : 560 p. (ISBN 978-2-7011-4273-9)
- Lehman, J.-P. (1973) Les preuves paléontologiques de l'évolution, PUF.
- Lodé, T. (2006) La guerre des sexes chez les animaux Odile Jacob, Paris. (ISBN 978-2-7381-1901-8)
- Marchand, D. (2002) Les merveilles de l'évolution, P.U. Dijon.
- Mayr, E. (1989) The Growth of Biological Thought: Diversity, Evolution and Inheritance, Ed. Cambridge, Harvard University Press — traduit en français sous le titre de Histoire de la biologie. Diversité, évolution et hérédité, Fayard (1989) : 894 p. (ISBN 978-2-213-01894-2).
- Mayr, E. (2004) What makes biology unique? Considerations on the Autonomy of a Scientific Discipline, Ed. New York, Cambridge University Press — traduit en français sous le titre de Ernst Après Darwin. La biologie, une science pas comme les autres, Dunod (2006) : 237 p. (ISBN 978-2-10-049560-3).
- Pichot, A. (1993) Histoire de la notion de vie, éd. Gallimard, coll. TEL.
- Ridley (1998) Evolution Biologique, Ed. De Boeck (traduction française).
- Tort, P. (1996) Dictionnaire du darwinisme et de l’évolution, Ed. Paris, PUF, 3 vol., 5 000 p. Ouvrage couronné par l’Académie des Sciences.
- Wright, R. (1995) L’Animal Moral, Michalon.
- Zimmer, K. (2001) Evolution : the triumph of an idea, Harper Collins (anglophone)
Articles connexes
Liens externes
- (fr) Évolution. De l'origine de la vie aux origines de l'homme, dossier SagaScience du CNRS (France).
- Sélection de sites web sur la systématique et l’évolution dans le répertoire encyclopédique : Les Signets de la Bibliothèque nationale de France
- Effervesciences (CINAPS Télévision) : Darwin aujourdhui (avec Guillaume Lecointre)
- (en) L'évolution résumée en 60 secondes
- (en) Cours vidéo sur l'évolution par Khan Academy
- Portail de l’origine et de l’évolution du vivant
Wikimedia Foundation. 2010.