- Théorème de Gauss-Lucas
-
En mathématiques, le théorème de Gauss-Lucas, ou théorème de Lucas, établit une propriété des polynômes complexes. Il énonce que les racines du polynôme dérivé sont situées dans l'enveloppe convexe de l'ensemble des racines du polynôme d'origine.
Ce résultat est utilisé de façon implicite en 1836 par Carl Friedrich Gauss et prouvé en 1874 par Félix Lucas[1],[2].
Sommaire
Motivation
Il est facile de remarquer que si P(x) = ax2 + bx + c est un polynôme du second degré, le zéro de P ' est la demi-somme des zéros de P.
Par ailleurs, si un polynôme de degré n à coefficients réels admet n zéros réels distincts x1 < x2 < ... < xn, on voit en utilisant le théorème de Rolle que les zéros du polynôme dérivé sont dans l'intervalle [x1,xn].
Le résultat suivant peut être vu comme une généralisation de cette propriété des polynômes.
Énoncé
Soit P un polynôme non constant à coefficients complexes. Alors tout zéro de P ' appartient à l'enveloppe convexe de l'ensemble des zéros de P.
Preuve
Soit
la décomposition de P en facteurs irréductibles : le complexe c est le coefficient dominant du polynôme, les complexes ai en sont les zéros distincts, les entiers ni leurs multiplicités.
On a alors
En particulier,
ce qui s'écrit aussi
En prenant les conjugués, on voit que z est un barycentre à coefficients positifs des ai.Le cas où z est aussi zéro de P est évident.
Notes et références
- Félix Lucas, Sur une application de la Mécanique rationnelle à la théorie des équations, C.R. Hebd. Séances Acad. Sci. LXXXIX (1879), 224–226 [lire en ligne]
- Ne pas confondre avec Édouard Lucas.
Articles connexes
Catégories :- Analyse convexe
- Théorème d'analyse
- Analyse complexe
- Géométrie convexe
- Carl Friedrich Gauss
- Polynôme
Wikimedia Foundation. 2010.