Équations de Gauss-Codazzi

Équations de Gauss-Codazzi

En géométrie riemannienne, les équations de Gauss-Codazzi-Mainardi sont des équations fondamentales dans le cadre de la théorie des hypersurfaces plongées dans un espace euclidien, et plus généralement des sous-variétés d'une variété riemannienne. Il existe aussi des applications au cas des hypersurfaces plongées dans une variété pseudo-riemannienne : voir Équations de Gauss-Codazzi (relativité).

Dans la géométrie des surfaces classique, les équations de Gauss-Codazzi-Mainardi sont constituées d'une paire d'équations. La première équation, parfois appelée équation de Gauss relie la courbure intrinsèque (ou courbure de Gauss) de la surface aux dérivées de l'application de Gauss, via la seconde forme fondamentale. Cette équation est la base même du Theorema egregium de Gauss[1]. La seconde équation, parfois appelée équation de Codazzi-Mainardi, est une condition structurelle sur les dérivées secondes de l'application de Gauss[2]. Cette équation comprend la courbure extrinsèque (ou courbure moyenne) de la surface. Ces équations montrent que les composantes de la seconde forme fondamentale et ses dérivées classifie entièrement la surface à une transformation euclidienne près, ce qui revient à un des théorème de Pierre-Ossian Bonnet[3].

Sommaire

Énoncé formel

Soit i : MP une sous-variété n-dimensionnelle plongé d'une variété Riemannienne P de dimension n+p. Il existe une inclusion naturelle du fibré tangent de M dans celui de P, et le conoyau est le fibré normal de M :

0\rightarrow T_xM \rightarrow T_xP|_M \rightarrow T_x^\perp M\rightarrow 0.

La métrique donne suite exacte suivante :

TP|_M = TM\oplus T^\perp M.

Suivant cette suite, la connexion de Levi-Civita ∇′ de P se décompose en une composante tangentielle et une composante normale. Pour chaque X ∈ TM et champ de vecteur Y sur M,

\nabla'_X Y = \top(\nabla'_X Y) + \bot(\nabla'_X Y).

Soit

\nabla_X Y = \top(\nabla'_X Y),\quad \alpha(X,Y) = \bot(\nabla'_X Y).

Formule de Gauss[4] donne alors ∇X est la connexion de Levi-Civita pour M, et α est une forme différentielle vectorielle symétrique à valeur dans le fibré normal.

Un corolaire immédiat est l'équation de Gauss. Pour X, Y, Z, W ∈ TM,

\langle R'(X,Y)Z, W\rangle = \langle R(X,Y)Z, W\rangle + \langle \alpha(X,Z), \alpha(Y,W)\rangle -\langle \alpha(Y,Z), \alpha(X,W)\rangle

R′ est le tenseur de courbure de P et R est celui de M.

L'équation de Weingarten est un analogue de la formule de Gauss pour une connexion dans le fibré normal. Soit X ∈ TM et ξ un champ de vecteurs normaux. On décompose alors la dérivée covariante de ξ sur X en composantes normales et tangentielles :

\nabla_X\xi=\top (\nabla_X\xi) + \bot(\nabla_X\xi) = -A_\xi(X) + D_X(\xi).

Alors

  1. Équations de Weingarten : \langle A_\xi X, Y\rangle = \langle \alpha(X,Y), \xi\rangle
  2. DX est une connexion métrique dans le fibré normal.

Il y a donc un couple de connexions : ∇, définie sur le fibré tangent de M; et D, défini sur le fibré normal de M. Ces deux se combinent pour donner une connexion sur n'importe quel produit tensoriel de TM et TM. En particulier, elles définissent entièrement la dérivée covariante de α :

(\tilde{\nabla}_X \alpha)(Y,Z) = D_X\left(\alpha(Y,Z)\right) - \alpha(\nabla_X Y,Z) - \alpha(Y,\nabla_X Z).

L'équation de Codazzi-Mainardi donne

\bot\left(R'(X,Y)Z\right) = (\tilde{\nabla}_X\alpha)(Y,Z) - (\tilde{\nabla}_Y\alpha)(X,Z).

Énoncé des équations

En géométrie différentielle classique, les équations de Codazzi-Mainardi sont généralement exprimées avec la seconde forme fondamentales :

e_v-f_u=e\Gamma_{12}^1 + f(\Gamma_{12}^2-\Gamma_{11}^1) - g\Gamma_{11}^2
f_v-g_u=e\Gamma_{22}^1 + f(\Gamma_{22}^2-\Gamma_{12}^1) - g\Gamma_{12}^2

Dérivation des équations

Les dérivées secondes d'une surface paramétrique peuvent s'exprimées avec la base {Xu,Xv,N} ainsi que les symboles de Christoffel et la seconde forme fondamentale.

X_{uu}=\Gamma_{11}^1 X_u + \Gamma_{11}^2 X_v + eN
X_{uv}=\Gamma_{12}^1 X_u + \Gamma_{12}^2 X_v + fN
X_{vv}=\Gamma_{22}^1 X_u + \Gamma_{22}^2 X_v + gN

Le théorème de Clairaut énonce que les dérivées partielles suivantes commutent :

\left(X_{uu}\right)_v=\left(X_{uv}\right)_u

Si l'on différencie Xuu par rapport à v et Xuv par rapport à u, on obtient :

\left(\Gamma_{11}^1\right)_v X_u + \Gamma_{11}^1 X_{uv} + \left(\Gamma_{11}^2\right)_v X_v + \Gamma_{11}^2 X_{vv} + e_v N + e N_v = \left(\Gamma_{12}^1\right)_u X_u + \Gamma_{12}^1 X_{uu} + \left(\Gamma_{12}^2\right)_u X_v + \Gamma_{12}^2 X_{uv} + f_u N + f N_u

Si on substitue ensuite les expressions ci-dessus pour les dérivées secondes et qu'on égale les coefficients de N :

 f \Gamma_{11}^1 + g \Gamma_{11}^2 + e_v = e \Gamma_{12}^1 + f \Gamma_{12}^2 + f_u

en réarrangeant les termes, on retrouve la première équation de Codazzi-Mainardi.

Sources et références

  1. Gauss (1828).
  2. Nommée ainsi en l'honneur de Gaspare Mainardi (1856) et Delfino Codazzi (1868-1869), qui ont indépendamment trouvé ce résultat. Cf. Kline (1972), p. 885.
  3. Bonnet (1867).
  4. Terminology from Spivak, Volume III.

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Équations de Gauss-Codazzi de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Equations de Gauss-Codazzii — Équations de Gauss Codazzii En géométrie riemannienne, les équations de Gauss Codazzi Mainardi sont des équations fondamentales dans le cadre de la théorie des hypersurfaces plongées dans un espace euclidien, et plus généralement des sous… …   Wikipédia en Français

  • Équations de Gauss-Codazzii — En géométrie riemannienne, les équations de Gauss Codazzi Mainardi sont des équations fondamentales dans le cadre de la théorie des hypersurfaces plongées dans un espace euclidien, et plus généralement des sous variétés d une variété riemannienne …   Wikipédia en Français

  • Équations de gauss-codazzii — En géométrie riemannienne, les équations de Gauss Codazzi Mainardi sont des équations fondamentales dans le cadre de la théorie des hypersurfaces plongées dans un espace euclidien, et plus généralement des sous variétés d une variété riemannienne …   Wikipédia en Français

  • Gauss–Codazzi equations — In Riemannian geometry, the Gauss–Codazzi–Mainardi equations are fundamental equations in the theory of embedded hypersurfaces in a Euclidean space, and more generally submanifolds of Riemannian manifolds. They also have applications for embedded …   Wikipedia

  • Gauss-Codazzi equations (relativity) — The Gauss–Codazzi equations are the following collection of equations which relate the 4 dimensional Riemann tensor R {abcd}, Ricci tensor R {ab} and Ricci scalar R to their projection onto a 3 dimensional hypersurface embedded within 4… …   Wikipedia

  • Élimination de Gauss-Jordan — Pour les articles homonymes, voir pivot. En mathématiques, l élimination de Gauss Jordan, aussi appelée pivot de Gauss, nommée en hommage à Carl Friedrich Gauss et Wilhelm Jordan, est un algorithme de l algèbre linéaire pour déterminer les… …   Wikipédia en Français

  • Algorithme de Gauss-Newton — En mathématiques, l algorithme de Gauss Newton est une méthode de résolution des problèmes de moindres carrés non linéaires. Elle peut être vue comme une modification de la méthode de Newton dans le cas multidimensionnel afin de trouver le… …   Wikipédia en Français

  • Théorème de d'Alembert-Gauss — Pour les articles homonymes, voir Théorème de Gauss. Jean le Rond D Alembert est le premier à ressentir la nécessité de démontrer le théorème fondamental de l algèbre. Sa motivation est entièrement analytique, il r …   Wikipédia en Français

  • Carl Friedrich Gauss — « Gauss » redirige ici. Pour les autres significations, voir Gauss (homonymie). Carl Friedrich Gauß Portrait de Johann Carl Friedrich Gauss (1777 1855), réalisé par Christian …   Wikipédia en Français

  • Courbure de Gauss — La courbure de Gauss d une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l endomorphisme de Weingarten. Le tableau suivant liste les courbures de Gauss de …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”