Theoreme de Krein-Milman

Theoreme de Krein-Milman

Théorème de Krein-Milman

Le théorème de Krein-Milman est un théorème, démontré par Mark Krein et David Milman en 1940, qui généralise à certains espaces vectoriels topologiques un résultat géométrique portant sur les ensembles convexes énoncé par Hermann Minkowski en dimension finie (et souvent improprement dénommé lui-même « Théorème de Krein-Milman »).

Une forme particulièrement simplifiée du théorème s'énonce : tout polygone convexe est l'enveloppe convexe de l'ensemble de ses sommets. Cela est vrai aussi d'un polytope convexe.

Sommaire

La notion de « point extrémal »

Les points extrémaux sont ceux représentés en rouge

Soit C un convexe et c un point de C. On dit que c est un point extrémal de C lorsque C \setminus\{c\} est encore convexe. Cela équivaut à dire que, avec c_1,c_2\in C, l'égalité c=\frac{c_1+c_2}{2} implique c1 = c2 = c.

L'énoncé en dimension finie

Théorème — Tout convexe compact d'un espace affine de dimension finie est enveloppe convexe de l'ensemble de ses points extrémaux.

La démonstration n'est pas très longue, l'outil essentiel étant le théorème d'existence d'un hyperplan d'appui en tout point de la frontière d'un convexe.

La généralisation en dimension infinie

Théorème — Tout convexe compact d'un espace localement convexe séparé est l'adhérence de l'enveloppe convexe de l'ensemble de ses points extrémaux.

Références

  • Jean-Baptiste Hiriart-Urruty et Claude Lemaréchal, Fundamentals of convex analysis, coll. « Grundlehren Text Editions », Springer, 2001 (ISBN 3540422056), p. 41-42, 57 et 246.


Bibliographie

  • M. Krein, D. Milman (1940) On the extreme points of regularly convex sets, Studia Mathematica 9 133-138.


  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Th%C3%A9or%C3%A8me de Krein-Milman ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Theoreme de Krein-Milman de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Théorème de krein-milman — Le théorème de Krein Milman est un théorème, démontré par Mark Krein et David Milman en 1940, qui généralise à certains espaces vectoriels topologiques un résultat géométrique portant sur les ensembles convexes énoncé par Hermann Minkowski en… …   Wikipédia en Français

  • Théorème de Krein-Milman — Le théorème de Krein Milman est un théorème, démontré par Mark Krein et David Milman en 1940, qui généralise à certains espaces vectoriels topologiques un résultat géométrique portant sur les ensembles convexes énoncé par Hermann Minkowski en… …   Wikipédia en Français

  • Theoreme de Hahn-Banach — Théorème de Hahn Banach Ce théorème, auquel a été donné le nom des deux mathématiciens Hans Hahn et Stefan Banach, garantit l existence d une forme linéaire vérifiant certaines conditions (valeurs imposées sur une partie de l espace, mais… …   Wikipédia en Français

  • Theoreme de projection sur un convexe ferme — Théorème de projection sur un convexe fermé En mathématiques, le théorème de projection orthogonale sur un convexe est un résultat de minimisation de la distance qui généralise la projection orthogonale sur un espace vectoriel. Il remplace… …   Wikipédia en Français

  • Théorème de hahn-banach — Ce théorème, auquel a été donné le nom des deux mathématiciens Hans Hahn et Stefan Banach, garantit l existence d une forme linéaire vérifiant certaines conditions (valeurs imposées sur une partie de l espace, mais limitées partout). En… …   Wikipédia en Français

  • Théorème de projection orthogonale sur un convexe — Théorème de projection sur un convexe fermé En mathématiques, le théorème de projection orthogonale sur un convexe est un résultat de minimisation de la distance qui généralise la projection orthogonale sur un espace vectoriel. Il remplace… …   Wikipédia en Français

  • Théorème de Helly — dans le plan : si trois quelconques des convexes de la famille se rencontrent alors l intersection de tous ces convexes est non vide. Le théorème de Helly est un résultat combinatoire sur les convexes. Ce résultat a été prouvé en 1913 par… …   Wikipédia en Français

  • Théorème de carathéodory (géométrie) — Le théorème de Carathéodory est un théorème de géométrie relatif aux enveloppes convexes dans le contexte des espaces affines de dimension finie. Sommaire 1 Énoncé 2 Preuves 2.1 La preuve usuelle …   Wikipédia en Français

  • Theoreme de Minkowski — Théorème de Minkowski En mathématiques, le théorème de Minkowski est un résultat concernant la géométrie des réseaux. Il relie le nombre de points du réseau contenu dans une partie convexe symétrique au volume fondamental du réseau. Ce théorème… …   Wikipédia en Français

  • Théorème de helly — Le théorème de Helly est un résultat combinatoire sur les convexes. Ce résultat a été prouvé en 1913 par Eduard Helly, et il a été publié par Johann Radon en 1921[1],[2]. Énoncé Théorème …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”