Solide d'Archimède

Solide d'Archimède

En géométrie, un solide d'Archimède est un polyèdre convexe semi-régulier, fortement symétrique composé de deux sortes (ou davantage) de polygones réguliers se rencontrant à des sommets identiques. Ils sont distincts des solides de Platon, qui sont composés d'une seule sorte de polygones se rencontrant à des sommets identiques, et des solides de Johnson, dont les faces polygonales régulières ne se rencontrent pas à des sommets identiques. La symétrie des solides d'Archimède exclut les membres du groupe diédral, les prismes et les antiprismes.

Les solides d'Archimède peuvent tous être construits via les constructions de Wythoff à partir des solides de Platon avec les symétries tétraédrique (en), octaédrique (en) et icosaédrique (en). Voir polyèdre uniforme convexe.

Sommaire

Origine du nom

Les solides d'Archimède tirent leurs noms du mathématicien grec Archimède, qui les étudia dans un ouvrage actuellement perdu. Pendant la Renaissance, les artistes et les mathématiciens ont évalué les formes pures et ont redécouvert toutes ces formes. Cette recherche fut complétée aux alentours de 1619 par Johannes Kepler, qui définit les prismes, les antiprismes et les solides réguliers non-convexes connus sous le nom de solides de Kepler-Poinsot.

Classification

Il existe 13 solides d'Archimède (15 si l'on compte l'image chirale (dans un miroir) de deux solides énantiomorphes, (voir ci-dessous). Ici, la configuration de sommet fait référence au type de polygones réguliers que l'on rencontre à un sommet donné quelconque (Symbole de Schläfli). Par exemple, une configuration de sommet de (4,6,8) signifie qu'un carré, un hexagone et un octogone se rencontrent à un sommet (avec l'ordre pris dans le sens horaire autour du sommet).

Le nombre de sommets est 720° divisé par le défaut angulaire (en) au sommet[1].

Nom Solide Faces Arêtes Sommets Configuration
de sommet
Groupe
de symétrie
Graphe squelette
Tétraèdre tronqué Tétraèdre tronqué 8 triangles
hexagones
18 12 3,6,6 Td Graphe tétraédrique tronqué
Cube tronqué
ou hexaèdre tronqué
Cube tronqué 14 8 triangles
octogones
36 24 3,8,8 Oh Graphe hexaédrique tronqué
Octaèdre tronqué Octaèdre tronqué 14 6 carrés
8 hexagones
36 24 4,6,6 Oh Graphe octaédrique tronqué
Dodécaèdre tronqué Dodécaèdre tronqué 32 20 triangles
12 décagones
90 60 3,10,10 Ih Graphe dodécaédrique tronqué
Icosaèdre tronqué
ou Buckyball
ou ballon de foot
Icosaèdre tronqué 32 12 pentagones
20 hexagones
90 60 5,6,6 Ih Graphe icosaédrique tronqué
Cuboctaèdre Cuboctaèdre  14  triangles
carrés
24 12 3,4,3,4 Oh Graphe cuboctaédrique
Cube adouci
(2 formes chirales)
Cube adouci (Sah)
Cube adouci (Sh)
38 32 triangles
6 carrés
60 24 3,3,3,3,4 O Graphe cuboctaédrique adouci
Icosidodécaèdre Icosidodécaèdre 32 20 triangles
12 pentagones
60 30 3,5,3,5 Ih Graphe icosidodécaédrique
Dodécaèdre adouci
(2 formes chirales)
Dodécaèdre adouci (Sah)
Dodécaèdre adouci (Sh)
92 80 triangles
12 pentagones
150 60 3,3,3,3,5 I Graphe dodécaédrique adouci
Petit rhombicuboctaèdre
Petit rhombicuboctaèdre 26 8 triangles
18 carrés
48 24 3,4,4,4 Oh Graphe rhombicuboctaédrique
Cuboctaèdre tronqué
Grand rhombicuboctaèdre 26 12 carrés
8 hexagones
6 octogones
72 48 4,6,8 Oh Graphe cuboctaédrique tronqué
Petit rhombicosidodécaèdre
ou rhombicosidodécaèdre
Rhombicosidodécaèdre 62 20 triangles
30 carrés
12 pentagones
120 60 3,4,5,4 Ih Graphe icosidodécaédrique
tronqué
Icosidodécaèdre tronqué
Icosidodécaèdre tronqué 62 30 carrés
20 hexagones
12 décagones
180 120 4,6,10 Ih Graphe rhombicosidodécaédrique

Le cuboctaèdre et l'icosidodécaèdre ont des arêtes uniformes et ont été appelés quasi-réguliers.

Le cube adouci et le dodécaèdre adouci sont chiraux, ils sont de deux formes, (lévomorphe et dextromorphe). Lorsqu'un objet possèdes plusieurs formes qui sont images miroir les unes des autres en trois dimensions, ces formes sont appelées énantiomorphes. (Cette nomenclature est aussi utilisée pour les formes de composés chimiques, voir énantiomère).

Les duaux des solides d'Archimède sont appelés les solides de Catalan. Avec les bipyramides et les trapèzoèdres, ils sont les solides à faces uniformes avec des sommets réguliers.

Note et références

Voir aussi

Articles connexes

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Solide d'Archimède de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Solide d'Archimede — Solide d Archimède En géométrie, un solide d Archimède est un polyèdre convexe semi régulier, fortement symétrique composé de deux sortes (ou davantage) de polygones réguliers se rencontrant à des sommets identiques. Ils sont distincts des… …   Wikipédia en Français

  • Archimede — Archimède Pour les articles homonymes, voir Archimède (homonymie). Archimède …   Wikipédia en Français

  • Archimède de Syracuse — Archimède Pour les articles homonymes, voir Archimède (homonymie). Archimède …   Wikipédia en Français

  • Solide de johnson — La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Solide de catalan — Un dodécaèdre rhombique En mathématiques, un solide de Catalan ou dual archimédien, est un polyèdre dual d un solide d Archimède. Les solides de Catalan ont été nommés ainsi en l honneur du mathématicien belge Eugène Catalan qui fut le premier à… …   Wikipédia en Français

  • Solide de Johnson — La gyrobicoupole octogonale allongée (J37), un solide de Johnson …   Wikipédia en Français

  • Archimède — Pour les articles homonymes, voir Archimède (homonymie). Archimède de Syracuse …   Wikipédia en Français

  • Solide de Catalan — Un dodécaèdre rhombique En mathématiques, un solide de Catalan ou dual archimédien, est un polyèdre dual d un solide d Archimède. Les solides de Catalan ont été nommés ainsi en l honneur du mathématicien belge Eugène Catalan qui fut le premier à… …   Wikipédia en Français

  • ARCHIMÈDE — Lorsque, en 212 avant notre ère, les troupes de Marcellus entrèrent par surprise dans Syracuse, le siège de la ville durait depuis trois ans. La supériorité technique de Syracuse en imposait, ce qui explique en partie la longueur du siège. Elle… …   Encyclopédie Universelle

  • Solide (géométrie) — Solide géométrique En géométrie dans l espace, on définit en général le solide comme l ensemble des points situés à l intérieur d une partie fermée de l espace. On souhaite aussi, naturellement, que la surface délimitant le solide soit d aire… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”