- Hexakioctaedre
-
Hexakioctaèdre
Hexakioctaèdre Type Solide de Catalan Faces Triangles scalènes Éléments :
· Faces
· Arêtes
· Sommets
· Caractéristique
48
72
26
2Faces par sommet 4 et 6 Sommets par face 3 Isométries Octaédrique Dual Grand rhombicuboctaèdre Propriétés Convexe, uniformité des faces Un hexakioctaèdre est un solide de Catalan et le dual du solide d'Archimède, le grand rhombicuboctaèdre. Comme tel, il est de faces uniformes mais avec des faces polygonales irrégulières. Il ressemble un peu à un dodécaèdre rhombique gonflé— si on remplace chaque face d'un dodécaèdre rhombique avec un sommet unique et quatre triangles d'une manière régulière, on a pour résultat un hexakioctaèdre.
Voir aussi
Références
- Robert Williams, The Geometrical Foundation of Natural Structure: A Source Book of Design, 1979, ISBN 0-486-23729-X
Lien externe
- Hexakioctaèdre - MathWorld.com
Solides géométriques Les polyèdres Les solides de Platon Tétraèdre - Cube - Octaèdre - Icosaèdre - Dodécaèdre Les solides d'Archimède Tétraèdre tronqué - Cube tronqué - Octaèdre tronqué - Dodécaèdre tronqué - Icosaèdre tronqué - Cuboctaèdre - Cube adouci - Icosidodécaèdre - Dodécaèdre adouci - Petit rhombicuboctaèdre - Grand rhombicuboctaèdre - Petit rhombicosidodécaèdre - Grand rhombicosidodécaèdre Les solides de Kepler-Poinsot Petit dodécaèdre étoilé - Grand dodécaèdre étoilé - Grand dodécaèdre - Grand icosaèdre Les solides de Catalan Triakioctaèdre - Tétrakihexaèdre - Triakitétraèdre - Pentakidodécaèdre - Triaki-icosaèdre - Dodécaèdre rhombique - Icositétraèdre pentagonal - Triacontaèdre rhombique - Hexacontaèdre pentagonal - Icositétraèdre trapézoïdal - Hexakioctaèdre - Hexacontaèdre trapézoïdal - Hexaki icosaèdre Les solides de Johnson Les solides de révolution Boule - Cylindre de révolution - Cône de révolution - Tore - Paraboloïde de révolution - Portail de la géométrie
Catégorie : Polyèdre
Wikimedia Foundation. 2010.