- Dodécaèdre régulier
-
Dodécaèdre régulier Type Polyèdre régulier Faces Pentagone Éléments :
· Faces
· Arêtes
· Sommets
· Caractéristique
12
30
20
2Faces par sommet 3 Sommets par face 5 Isométries Dual Icosaèdre Propriétés Deltaèdre régulier et convexe modifier Un dodécaèdre régulier est un solide composé de 12 faces. Le préfixe dodéca-, d'origine grecque, fait référence au nombre de faces. Un dodécaèdre régulier est un solide de Platon composé de faces pentagonales, dont 3 se rejoignent à chaque sommet.
Le groupe des isométries directes du dodécaèdre régulier est isomorphe à A5 (groupe alterné sur 5 éléments). Le groupe de ses isométries est isomorphe à .
Les coordonnées canoniques pour un dodécaèdre centré sur l'origine :
- ,
- ,
- ,
- ,
où est le nombre d'or.
Les coordonnées du centre des arêtes :
- ,
- ,
- ,
- ,
- ,
- ,
Si a est la longueur d'une arête :- La surface est égale à :
et le volume à :
L'angle dièdre entre deux faces vaut :
soit environ 116°33'54.
Le squelette du dodécaèdre régulier, l'ensemble de ses sommets reliés par ses arêtes, forme un graphe appelé graphe dodécaédrique.
Autres dodécaèdres remarquables
Article détaillé : Dodécaèdre.Archéologie
Wikimedia Foundation. 2010.