- Petit rhombicosidodecaedre
-
Petit rhombicosidodécaèdre
Petit rhombicosidodécaèdre Type Solide d'Archimède Faces Triangles, Carrés et Pentagones Éléments :
· Faces
· Arêtes
· Sommets
· Caractéristique
62
120
60
2Faces par sommet 4 Sommets par face 3, 4 et 5 Isométries I Dual Hexacontaèdre trapézoïdal Propriétés Semi-régulier et convexe Le petit rhombicosidodécaèdre est un solide d'Archimède. Il possède 20 faces triangulaires régulières, 30 faces carrées régulières, 12 faces pentagonales régulières, 60 sommets et 120 arêtes.
Le nom rhombicosidodécaèdre fait référence au fait que les 30 faces carrées sont placées dans les mêmes plans que les 30 faces du triacontaèdre rhombique qui est le dual de l'icosidodécaèdre.
Il peut aussi être appelé un dodécaèdre étendu ou un icosaèdre étendu à partir des opérations de troncature du solide uniforme.
Sommaire
Relations géométriques
Si vous étendez un icosaèdre en déplaçant les faces de l'origine d'une certaine distance, sans changer l'orientation ou la taille des faces et que vous faites la même chose à son dual, le dodécaèdre et que vous remplissez les trous carrés dans le résultat, vous obtenez un petit rhombicosidodécaèdre. Par conséquent, il possède le même nombre de triangles qu'un icosaèdre et le même nombre de pentagones qu'un dodécaèdre, avec un carré pour chaque coté d'arête.
Les kits Zome pour fabriquer des dômes géodésiques et d'autres polyèdres utilisent des boules fendues comme connecteurs. Les boules sont des petits rhombicosidodécaèdres "développés", avec les carrés remplacés par des rectangles. Le développement est choisi de telle sorte que les rectangles résultants sont des rectangles d'or.
Coordonnées cartésiennes
Les coordonnées cartésiennes pour les sommets d'un petit rhombicosidodécaèdre centré à l'origine sont
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- ,
- ,
où est le nombre d'or.
Voir aussi
- Le dodécaèdre
- L'icosaèdre
- L'icosidodécaèdre
- Le petit rhombicuboctaèdre
- Le grand rhombicosidodécaèdre (icosidodécaèdre tronqué)
Références
- Robert Williams, The Geometrical Foundation of Natural Structure: A Source Book of Design, 1979, ISBN 0-486-23729-X
Liens externes
- (en) Les polyèdres uniformes
- (en) Les polyèdres en réalité virtuelle L'encyclopédie des Polyèdres
Solides géométriques Les polyèdres Les solides de Platon Tétraèdre - Cube - Octaèdre - Icosaèdre - Dodécaèdre Les solides d'Archimède Tétraèdre tronqué - Cube tronqué - Octaèdre tronqué - Dodécaèdre tronqué - Icosaèdre tronqué - Cuboctaèdre - Cube adouci - Icosidodécaèdre - Dodécaèdre adouci - Petit rhombicuboctaèdre - Grand rhombicuboctaèdre - Petit rhombicosidodécaèdre - Grand rhombicosidodécaèdre Les solides de Kepler-Poinsot Petit dodécaèdre étoilé - Grand dodécaèdre étoilé - Grand dodécaèdre - Grand icosaèdre Les solides de Catalan Triakioctaèdre - Tétrakihexaèdre - Triakitétraèdre - Pentakidodécaèdre - Triaki-icosaèdre - Dodécaèdre rhombique - Icositétraèdre pentagonal - Triacontaèdre rhombique - Hexacontaèdre pentagonal - Icositétraèdre trapézoïdal - Hexakioctaèdre - Hexacontaèdre trapézoïdal - Hexaki icosaèdre Les solides de Johnson Les solides de révolution Boule - Cylindre de révolution - Cône de révolution - Tore - Paraboloïde de révolution - Portail de la géométrie
Catégorie : Polyèdre
Wikimedia Foundation. 2010.