Matrice élémentaire
- Matrice élémentaire
-
Une matrice est dite élémentaire lorsqu'elle est obtenue en appliquant une seule opération élémentaire sur les lignes ou colonnes de la matrice identité[1].
Les opérations élémentaires sur une matrice sont les suivantes[2] :
- permuter deux lignes ou deux colonnes entre elles respectivement
- ajouter un multiple d'une ligne à une autre ligne (respectivement colonne)
- multiplier une ligne ou une colonne par un scalaire différent de zéro
Exemples
Multiplier à gauche une matrice A par une matrice élémentaire résultant d'une opération élémentaire sur les lignes de la matrice identité revient à effectuer l'opération correspondante sur les lignes de A.
Multiplier A à droite par une matrice élémentaire résultant d'une opération sur les colonnes de la matrice identité revient à faire cette opération sur les colonnes de A. En effet, une matrice élémentaire de ce type est la transposée d'une matrice du type précédent.
Notes et références
Voir aussi
|
Par forme |
|
Transformée |
|
En relation |
|
Par propriété |
|
Par famille |
|
Particulière |
|
Associée |
|
Résultats |
|
Voir aussi |
|
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Matrice élémentaire de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
Matrice elementaire — Matrice élémentaire Une matrice est dite élémentaire lorsqu elle est obtenue par des opérations élémentaires sur les lignes ou colonnes de la matrice identité. Les opérations élémentaires sur une matrice sont les suivantes : échanger deux… … Wikipédia en Français
Matrice Élémentaire — Une matrice est dite élémentaire lorsqu elle est obtenue par des opérations élémentaires sur les lignes ou colonnes de la matrice identité. Les opérations élémentaires sur une matrice sont les suivantes : échanger deux lignes ou deux… … Wikipédia en Français
Matrice De Permutation — Une matrice de permutation est une matrice carrée qui vérifie les propriétes suivantes : les coefficients sont 0 ou 1 ; il y a un et un seul 1 par ligne ; il y a un et un seul 1 par colonne. Ainsi : est une matrice de… … Wikipédia en Français
Matrice (algèbre) — Matrice (mathématiques) Pour les articles homonymes, voir Matrice. En mathématiques, les matrices servent à interpréter en termes calculatoire … Wikipédia en Français
Matrice (mathematiques) — Matrice (mathématiques) Pour les articles homonymes, voir Matrice. En mathématiques, les matrices servent à interpréter en termes calculatoire … Wikipédia en Français
Matrice carrée — Matrice (mathématiques) Pour les articles homonymes, voir Matrice. En mathématiques, les matrices servent à interpréter en termes calculatoire … Wikipédia en Français
Matrice De Vandermonde — En algèbre linéaire, une matrice de Vandermonde est une matrice avec une progression géométrique dans chaque ligne. Elle tient son nom d Alexandre Théophile Vandermonde. Sommaire 1 Présentation 2 Inversibilité 3 Déterminant … Wikipédia en Français
Matrice de vandermonde — En algèbre linéaire, une matrice de Vandermonde est une matrice avec une progression géométrique dans chaque ligne. Elle tient son nom d Alexandre Théophile Vandermonde. Sommaire 1 Présentation 2 Inversibilité 3 Déterminant … Wikipédia en Français
Matrice Diagonalisable — En algèbre linéaire, une matrice carrée M d ordre n ( ) à coefficients dans un corps commutatif K, est dite diagonalisable si elle est semblable à une matrice diagonale, c est à dire s il existe une matrice inversible P et une matrice diagonale D … Wikipédia en Français
Matrice Inversible — En mathématiques et plus particulièrement en algèbre linéaire, une matrice carrée A d ordre n est dite inversible ou régulière ou encore non singulière, s il existe une matrice B d ordre n telle que AB = BA = In, ( AB = In suffit d aprés le… … Wikipédia en Français