Matrice CKM
- Matrice CKM
-
En physique, et plus précisément dans le modèle standard de la physique des particules, la matrice de Cabibbo-Kobayashi-Maskawa (matrice CKM) est une matrice unitaire qui contient les informations sur la probabilité de changement de saveur d’un quark lors d’une interaction faible. Techniquement, elle décrit la différence entre les états propres des quarks libres et les états propres des quarks en interaction faible.
Si , et sont les états propres de masse, et , et sont les états propres de saveur, on a la relation :
- ,
où Vij est la matrice CKM.
Cette matrice peut être paramétrée par trois angles de mélange (θ12,θ13 et θ23) et une phase de violation de CP (δ). En définissant sij = sin θij et cij = cos θij, nous pouvons écrire la matrice CKM sous la forme :
Les modules des éléments de cette matrice peuvent être mesurés expérimentalement. En 2008, les valeurs sont[1] :
Références
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Matrice CKM de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
Matrice Cabibbo-Kobayashi-Maskawa — Matrice CKM Dans le modèle standard de la physique des particules, la matrice de Cabibbo Kobayashi Maskawa (matrice CKM) est une matrice unitaire qui contient les informations sur la probabilité de changement de saveur d’un quark lors d’une… … Wikipédia en Français
Matrice de Cabibbo-Kobayashi-Maskawa — Matrice CKM Dans le modèle standard de la physique des particules, la matrice de Cabibbo Kobayashi Maskawa (matrice CKM) est une matrice unitaire qui contient les informations sur la probabilité de changement de saveur d’un quark lors d’une… … Wikipédia en Français
Matrice (algèbre) — Matrice (mathématiques) Pour les articles homonymes, voir Matrice. En mathématiques, les matrices servent à interpréter en termes calculatoire … Wikipédia en Français
Matrice (mathematiques) — Matrice (mathématiques) Pour les articles homonymes, voir Matrice. En mathématiques, les matrices servent à interpréter en termes calculatoire … Wikipédia en Français
Matrice carrée — Matrice (mathématiques) Pour les articles homonymes, voir Matrice. En mathématiques, les matrices servent à interpréter en termes calculatoire … Wikipédia en Français
Matrice Diagonalisable — En algèbre linéaire, une matrice carrée M d ordre n ( ) à coefficients dans un corps commutatif K, est dite diagonalisable si elle est semblable à une matrice diagonale, c est à dire s il existe une matrice inversible P et une matrice diagonale D … Wikipédia en Français
Matrice Définie Positive — En algèbre linéaire, la notion de matrice définie positive est analogue à celle de nombre réel strictement positif. On introduit tout d abord les notations suivantes ; si a est une matrice à éléments réels ou complexes : aT désigne la… … Wikipédia en Français
Matrice Inversible — En mathématiques et plus particulièrement en algèbre linéaire, une matrice carrée A d ordre n est dite inversible ou régulière ou encore non singulière, s il existe une matrice B d ordre n telle que AB = BA = In, ( AB = In suffit d aprés le… … Wikipédia en Français
Matrice Nilpotente — Une matrice nilpotente est une matrice dont il existe une puissance égale à la matrice nulle. Elle correspond à la notion d endomorphisme nilpotent. Cette notion joue un rôle important dans le monde des matrices. En effet, pour un maniement plus… … Wikipédia en Français
Matrice definie positive — Matrice définie positive En algèbre linéaire, la notion de matrice définie positive est analogue à celle de nombre réel strictement positif. On introduit tout d abord les notations suivantes ; si a est une matrice à éléments réels ou… … Wikipédia en Français