Matrice Tridiagonale

Matrice Tridiagonale

Matrice tridiagonale

En mathématiques, en algèbre linéaire, une matrice tridiagonale est une matrice telle que les coefficients qui ne sont pas sur la diagonale, sur la diagonale juste au-dessous ou sur la diagonale juste au-dessus sont tous nuls.

Par exemple, la matrice suivante est tridiagonale :

\begin{pmatrix}
1 & 4 & 0 & 0 \\
3 & 4 & 1 & 0 \\
0 & 2 & 3 & 4 \\
0 & 0 & 1 & 3 \\
\end{pmatrix}

Sommaire

Définition

Une matrice M \in \mathcal{M}_n \left( \mathbb{K} \right), dont on note les coefficients mi,j, est dite tridiagonale si et seulement si :

m_{i,j} = 0 \, pour tous (i, j) tels que |i-j| > 1\,.

Propriétés

Une matrice tridiagonale est une matrice de Hessenberg.

Si une matrice réelle tridiagonale A vérifie ak,k+1 × ak+1,k > 0 pour k = 1, 2, ..., n — c’est-à-dire que les signes de ces coefficients sont symétriques, alors elle est semblable à une matrice hermitienne, et donc toutes ses valeurs propres sont réelles. Cette dernière propriété est conservée si on considère plutôt la condition ak,k+1 × ak+1,k ≥ 0.

L'ensemble de toutes les matrices tridiagonales n × n est un espace vectoriel de dimension 3n-2.

Utilisation

Algorithmes

De nombreux algorithmes d'algèbre linéaire nécessitent bien moins d'opérations lorsqu'on les execute sur des matrices diagonales. Il est courant que ce gain se propage aux matrices tridiagonales.

Par exemple, le déterminant d'une matrice tridiagonale A n×n peut être calculé par la formule récursive suivante :

 \det A = a_{n,n} \det \, [A]_{\{1,\ldots,n-1\}} - a_{n,n-1} a_{n-1,n} \det \, [A]_{\{1,\ldots,n-2\}} \, ,\,

où l'on note \det [A]_{\{1,\ldots,k\}} le k-ième mineur, c'est-à-dire le déterminant de la matrice obtenue en ne gardant que les k premières lignes et colonnes de A. Le calcul du déterminant par cette méthode est linéaire en n pour les matrices tridiagonales, alors qu'il est en dans le cas général.

Une transformation qui réduit une matrice quelconque à une matrice de Hessenberg réduira une matrice hermitienne à une matrice tridiagonale. Ainsi, de nombreux algorithmes de calcul des valeurs propres utilisent une étape de réduction sous la forme d'une matrice tridiagonale s'ils travaillent sur des matrices hermitiennes.

Mémoire

Une matrice tridiagonale peut être stockée de façon optimisée en utilisant une représentation particulière. Par exemple, la librairie LAPACK enregistre une matrice non-symétrique sous la forme de trois tableaux unidimensionnels, l'un contenant les coefficients diagonaux et les deux autres les éléments respectivement au-dessus et au-dessous de la diagonale.

Mathématiques

Les matrices tridiagonales sont courantes dans l'étude des splines cubiques. Elles sont également souvent des solutions au problème de Sturm-Liouville.

D'autre part, un système linéaire implicant une matrice tridiagonale, de la forme :

A \cdot X = B \in \reals^n

peut être résolu au travers d'algorithmes spécifiques, qui nécessitent O(n) opérations (Golub et Van Loan).

Voir aussi

Articles connexes

References


  • (en) Cet article est partiellement ou en totalité issu d’une traduction de l’article de Wikipédia en anglais intitulé « Tridiagonal matrix ».
  • Roger A. Horn et Charles R. Johnson, « Analyse matricielle », Cambridge University Press, 1985. ISBN 0-521-38632-2.
  • Gene H. Golub et Charles F. Van Loan, « Calculs matriciels (3e edt.) », Johns Hopkins Univ Pr., 1996. ISBN 0-8018-5414-8.

Liens externes

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Matrice tridiagonale ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Matrice Tridiagonale de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Matrice tridiagonale — En mathématiques, en algèbre linéaire, une matrice tridiagonale est une matrice dont tous les coefficients qui ne sont ni sur la diagonale principale, ni sur la diagonale juste au dessus, ni sur la diagonale juste en dessous, sont nuls. Par… …   Wikipédia en Français

  • Matrice par blocs — Matrice par bloc En théorie des matrices, une matrice par bloc ou matrice partitionnée est une matrice pouvant être divisée en matrices rectangulaires de dimensions inférieures appelées blocs. On peut dire également que la matrice est écrite en… …   Wikipédia en Français

  • Matrice Creuse — Une matrice creuse obtenue lors de la résolution d un problème éléments finis. Les éléments non nuls sont représentés en noir. Dans la discipline de l analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de… …   Wikipédia en Français

  • Matrice clairsemée — Matrice creuse Une matrice creuse obtenue lors de la résolution d un problème éléments finis. Les éléments non nuls sont représentés en noir. Dans la discipline de l analyse numérique des mathématiques, une matrice creuse est une matrice… …   Wikipédia en Français

  • Matrice par bloc — En théorie des matrices, une matrice par bloc ou matrice partitionnée est une matrice pouvant être divisée en matrices rectangulaires de dimensions inférieures appelées blocs. On peut dire également que la matrice est écrite en termes de matrices …   Wikipédia en Français

  • Matrice creuse — Une matrice creuse obtenue lors de la résolution d un problème éléments finis. Les éléments non nuls sont représentés en noir. Dans la discipline de l analyse numérique des mathématiques, une matrice creuse est une matrice contenant beaucoup de… …   Wikipédia en Français

  • Matrice (algèbre) — Matrice (mathématiques) Pour les articles homonymes, voir Matrice. En mathématiques, les matrices servent à interpréter en termes calculatoire …   Wikipédia en Français

  • Matrice (mathematiques) — Matrice (mathématiques) Pour les articles homonymes, voir Matrice. En mathématiques, les matrices servent à interpréter en termes calculatoire …   Wikipédia en Français

  • Matrice carrée — Matrice (mathématiques) Pour les articles homonymes, voir Matrice. En mathématiques, les matrices servent à interpréter en termes calculatoire …   Wikipédia en Français

  • Matrice Diagonalisable — En algèbre linéaire, une matrice carrée M d ordre n ( ) à coefficients dans un corps commutatif K, est dite diagonalisable si elle est semblable à une matrice diagonale, c est à dire s il existe une matrice inversible P et une matrice diagonale D …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”