- Immunologiste
-
Immunologie
L'immunologie est la branche de la biologie qui s'occupe de l'étude du système immunitaire. Apparu très tôt dans l'échelle de l'évolution, ce système a évolué pour discriminer le soi du non-soi. Les réactions de défense de l'organisme face à un organisme pathogène - quelle que soit la nature de celui-ci, virus, bactérie, champignon ou protozoaires, les maladies auto-immunes, les allergies et le rejet des greffes forment l'aspect médical de cette science. Les mécanismes de synthèse et de maturation des anticorps, d'activation du système du complément, la mobilisation et la coordination des cellules de défense, forment l'aspect fondamental et mécanistique de cette science.
Le VIH est un virus responsable de la pandémie de SIDA dont le cycle de vie interfère avec le système immunitaire humain.
Sommaire
Histoire
"Préhistoire"
Les plus anciens témoignages connus d’observations d’ordre immunologique datent de 430 avant Jésus-Christ. À cette date, pendant l’épidémie de fièvre typhoïde qui sévit à Athènes durant la guerre du Péloponnèse, l’historien Thucydide nota que seules les personnes ayant déjà supporté et survécu à l’infection étaient aptes à s’occuper des malades.
Aux alentours de 6000 avant Jésus-Christ, il existe en Chine des pratiques de transmission volontaire de la variole en vue de prévention. Cette technique, appelée "variolisation", consiste à prélever du pus sur un malade peu atteint par la maladie pour l’inoculer avec une aiguille chez un sujet sain. Ce procédé se répandit à partir du quinzième siècle, surtout en Chine, en Inde et en Turquie. Par l’entremise de l’épouse de l’ambassadeur britannique à Constantinople, qui fit vacciner son fils de cette manière, la variolisation s’est fait connaître en Angleterre vers 1722, puis s’est propagée dans les années suivantes dans toute l’Europe.
À la même époque, le médecin de campagne Edward Jenner constatait que les fermières en contact régulier, lors de la traite, avec la variole de la vache (vaccine ou Cowpox), qui est inoffensive pour les humains, étaient épargnées par les épidémies de variole, alors fréquentes, ou ne montraient que de faibles symptômes. Après avoir intensivement étudié le phénomène, il préleva le 14 mai 1796 du pus sur une pustule d’une jeune fille contaminée par la vaccine, et l’injecta à un jeune garçon de huit ans. Après que le garçon eut guéri de la maladie bénigne induite par la vaccine, Jenner lui injecta de la variole véritable. Le garçon surmonta également cette infection sans symptômes sérieux. Par rapport à la variolisation, le procédé de Jenner offrait certains avantages majeurs : les personnes vaccinées par la vaccine ne présentaient pas les boutons et les cicatrices typiques induites par la variolisation ; il n’y avait aucun risque de mortalité contrairement à la variolisation ; et les personnes vaccinées ne représentaient aucun risque de contagion. Le virus de la vaccine est la l’origine des noms de "vaccin" et "vaccination", et Edward Jenner est considéré aujourd’hui comme le fondateur de l’immunologie.
Les tournants du dix-neuvième siècle
Une autre étape majeure dans le développement de l’immunologie est la conception d’un vaccin contre la rage par Louis Pasteur en 1885. Le 6 juillet 1885, il vaccine Joseph Meister, un garçon de neuf ans qui avait été mordu deux jours plus tôt par un chien enragé. Joseph Meister devint alors le premier être humain à survivre à la rage dans l’histoire de la médecine. En une année, le vaccin fut administré à 350 personnes contaminées, et aucune ne mourut de son infection rabique. Deux ans auparavant, Robert Koch avait découvert le responsable de la tuberculose, le bacille qui porte son nom, et peu de temps après, le test à la tuberculine, qui permet de prouver l’infection par la tuberculose, et qui se fonde sur la réponse immunitaire. Ces travaux servirent de base aux travaux de Calmette et Guérin, qui décrivirent le bacille qui porte leur nom (BCG pour bacille de Calmette et Guérin) et menant à la vaccination contre la tuberculose. Le vaccin permettant de lutter contre les maladies infectieuses se développa à partir de cette époque. Max Theiler reçu le prix Nobel de médecine en 1951 pour la mise au point d’un vaccin contre la fièvre jaune.
En 1888, Emile Roux et Alexandre Yersin ont découvert la toxine diphtérique. Deux ans plus tard, Emil Adolf von Behring et Shibasaburo Kitasato mettent en évidence une antitoxine dans le sérum des patients qui avaient survécu à la diphtérie. Emil von Behring fut le premier à utiliser ces anti-séra pour la prise en charge des malades diphtériques. Pour ces travaux, il reçut en 1901 le prix Nobel de médecine. Le bactériologue belge Jules Bordet découvre en 1898 que chauffer le sérum au-dessus de 55°C bloque sa capacité de coller à certaines substances chimiques. La capacité du sérum à tuer les bactéries était également perdue. Il posa le postulat suivant : il existe dans le sérum une substance, sensible à la chaleur, nécessaire à l’action du sérum sur les bactéries, et il nomma ce composé "Alexin". Ehrlich étudia ce composé dans les années suivantes, et introduisit le concept de complément encore utilisé de nos jours.
Début du vingtième siècle
Au début du vingtième siècle, la recherche en immunologie prend deux directions distinctes. L’immunologie humorale, dont les principales figures étaient Paul Ehrlich et Emil Adolf von Behring, partait du principe que la base de la défense contre les infections devait se trouver dans une substance contenue dans le sérum, comme les antitoxines. Cette théorie prédomina vers les années 1900 et pendant plusieurs dizaines d’années. En parallèle, et à partir des années 1883/1884, se développa le point de vue de l’immunité cellulaire, qui se base sur les travaux de George Nuttall ainsi que Ilja Iljitsch Metschnikov. Metschnikov put prouver l’implication et l’importance de l’action des cellules du corps dans la lutte contre les pathogènes en étudiant l’action des globules blancs sur des bactéries. Ses travaux sur la phagocytose lui valurent le prix Nobel de médecine en 1908, conjointement avec Paul Ehrlich. Comme il sera montré plus tard, ces deux types de phénomènes sont les deux facettes de l’action du système immunitaire et de la réponse immunitaire. Il fallut cependant attendre les années 1940 pour que l’hypothèse de l’immunité cellulaire soit généralement reconnue, et que l’hypothèse selon laquelle les anticorps seraient les acteurs principaux de la réponse immunitaire soit abandonnée.
En 1901, Karl Landsteiner mit en évidence l’existence des groupes sanguins et par cette découverte permit de franchir une nouvelle étape importante dans la compréhension du système immunitaire. Il reçut en 1930 le prix Nobel de médecine. En 1906, Clemens Peter Freiherr von Pirquet observa que les patients à qui il administrait du sérum de cheval avaient une forte réaction à la deuxième injection. Il nomma cette réaction d’hypersensibilité "allergie". Le phénomène d’anaphylaxie fut découvert par Charles Robert Richet, qui reçut pour cela le prix Nobel de médecine en 1913. Emil von Dungern et Ludwik Hirszfeld publient en 1910 leurs recherches sur la transmission des groupes sanguins, et ainsi les premiers résultats sur la génétique d’une partie du système immunitaire. Dans ce travail, ils proposent la nomenclature « ABO », qui deviendra un standard international en 1928. En 1917, Karl Landsteiner décrit le concept d’haptènes, qui après s’être conjuguées à une protéine sont capables d’induire une réponse immunitaire avec production d’anticorps spécifiques. Lloyd Felton réussit en 1928 la purification des anticorps à partir du sérum. De 1934 à 1938, John Marrack développa la théorie de la reconnaissance spécifique d’un antigène par un anticorps.
En étudiant le rejet de greffes, Peter Gorer découvrit l’antigène H-2 de la souris, et ainsi, sans le savoir, le premier antigène de ce qu’on appellera ensuite le complexe majeur d'histocompatibilité (MHC pour l’anglais major histocompatibility complex). Toujours par l’étude du rejet de greffe, Peter Medawar et Thomas Gibson découvrirent d’importantes fonctions des cellules immunitaires. C’est par ces travaux que l’acceptation générale de l’immunité cellulaire se fit. En 1948, Astrid Fagraeus découvrit que les anticorps sont produits dans le plasma sanguin par les lymphocytes B. L’année suivante, Frank Macfarlane Burnet et Frank Fenner publiaient leur hypothèse de la tolérance immunologique, qui fut validée quelques années plus tard par Jacques Miller, qui découvrit l’élimination des lymphocytes T auto-réactifs dans le thymus. Burnet et Fenner reçurent le prix Nobel de médecine en 1960 pour leurs travaux sur la tolérance. En 1957, Frank Macfarlane Burnet décrivit le principe fondamental de l’immunité adaptative comme étant la sélection clonale.
L’Anglais Alick Isaacs et le Suisse Jean Lindemann, en étudiant l’infection de cultures cellulaires par des virus, découvrirent en 1957 que les cellules, au cours de l’infection par un virus, étaient en grande partie résistantes à une autre infection par un deuxième virus. Ils isolèrent à partir des cellules infectées une protéine qu’ils nommèrent interféron. À la fin des années 1960 et au début des années 1970, John David et Barry Bloom découvrirent le facteur d’inhibition de la migration des macrophages (MIF) ainsi que de nombreuses autres substances secrétées par les lymphocytes. Dudley Dumonde proposa pour ces substances le nom de "lymphokine". Stanley Cohen, qui reçut en 1986 le prix Nobel de médecine pour sa découverte des facteurs de croissances NGF et EGF, commença, au début des années 1970, à travailler avec Takeshi Yoshida sur les fonctions des lymphokines. Ils mirent en évidence que ces substances, produites de nombreux types différents de cellules, étaient capables d’action à distance, comme des hormones. Suite aux nombreuses découvertes dans ce domaine, Stanley Cohen proposa en 1974 le terme "cytokine" qui s’imposa rapidement. Entretemps, plus de cent cytokines différentes étaient identifiées, et leurs structures et activités étudiées en détail.
L'immunologie moderne
Les années soixante sont en général considérées comme le début de l’époque moderne de l’immunologie. Rodney Porter et Gerald Edelman réussirent à élucider la structure des anticorps entre 1959 et 1961, et furent lauréats du prix Nobel de médecine en 1972. En même temps, Jean Dausset, Baruj Benacerraf et George Snell découvraient le complexe majeur d'histocompatibilité, également appelé système HLA (de l’anglais Human Leukocyt Antigen) chez l’être humain, découverte qui leur permit de recevoir le prix Nobel de médecine en 1980. En 1959, Joseph Murray réalise la première allogreffe en transplantant un rein. Avec Donnall Thomas, il étudie l’immunosuppression artificielle qui permet la tolérance des patients vis-à-vis leur greffe ; Ils reçurent le prix Nobel de médecine en 1990 pour ces études. Vers 1960 également, la communauté scientifique découvrait, grâce aux travaux de Jacques Miller, d’autres caractéristiques fondamentales des cellules immunitaires, en particulier la description des fonctions et de la différentiation des lymphocytes B et T. Après cette percée, la théorie selon laquelle l’immunité est divisée en une partie cellulaire et une autre humorale s’imposa, et les deux théories ne furent plus mises en concurrence. Dans les décennies suivantes, les différents sous-types (appelés isotypes) d’anticorps furent identifiés et leurs fonctions respectives étudiées. En 1975, Georges Köhler, Niels Kaj Jerne et César Milstein décrivent la méthode de production des anticorps monoclonaux. Cette découverte eut un impact majeur sur la recherche fondamentale, ainsi que pour le diagnostic et le traitement de maladies, et ils reçurent en 1984 le prix Nobel de médecine. D’autres découvertes majeures furent faites dans les années suivantes : En 1973, Ralph Steinman et Zanzil Cohn découvrent les cellules dendritiques ; En 1974, Rolf Zinkernagel et Peter Doherty découvrent la restriction de la présentation de l’antigène par les molécules du MHC, découverte qui lui valu le prix Nobel de médecine en 1996; En 1985, Susumu Tonegawa identifie les gènes des immunoglobulines, et reçoit pour cela en 1987 le prix Nobel ; la même année, Leroy Hood fait de même pour les gènes du récepteur des cellules T.
Un autre concept émerge en 1986: celui de l'orientation de la réponse immunitaire. Basé sur le rôle des lymphocytes T CD4+, ce concept, développé par Robert Coffman et Tim Mosmann, présente la dichotomie entre une "Th1", réponse orientée contre des cellules d'une part, qui produira des lymphocytes cytotoxiques spécifiques, comme dans le cas du cancer ou d'une infection intracellulaire; et une réponse "Th2" contre un agent soluble, qui produira des anticorps spécifiques, comme dans le cas d'une bactérie extracellulaire ou d'une toxine. La balance Th1/Th2 est toujours un intense champ de recherche.
La notion de tolérance induite par des lymphocytes fut pour la première fois évoquée en 1969 par Nishizuka et Sokakura. Ils présentaient leurs résultats concernant une sous-population de lymphocytes T suppresseurs capables d'empêcher une réaction de lymphocytes naïfs. Très controversés, ces résultats seront oubliés jusqu'à la redécouverte du phénomène par Sakaguchi en 1982 sous le nom de T régulateur, sujet activement étudié actuellement.
Depuis les années 1950, la théorie qui domine en immunologie est celle de la reconnaissance du "soi" et du "non-soi" par le système immunitaire adaptatif. Cependant, ce modèle ne permet pas d'expliquer de manière satisfaisante les phénomènes de tolérance, de rejet de greffe, ni la nécessité de la présentation de l'antigène, et en 1989, Charles Janeway propose un modèle selon lequel ce serait l'immunité innée qui serait la véritable gardienne des clefs du déclenchement d'une réponse immunitaire. La décision de réagir ou non face à un agent étranger reposerait sur la reconnaissance de motifs par des récepteurs putatifs qu'il nomme les PRR (pour l'anglais Pattern Recognition Receptor). Ce modèle est approfondi à partir de 1994 par Polly Matzinger, qui développe la théorie du danger. D'après Matzinger, le déclenchement de la réponse immunitaire se ferait sur la base de motifs moléculaires associés aux organismes pathogènes (PAMP, de l'anglais pathogen-associated molecular pattern) par les PRR. Ce modèle fut validé expérimentalement depuis par l'identification de récepteurs de signaux de dangers et de certains de leurs ligands.
De nos jours, la multiplication des cytokines, chimiokines, sous-types et marqueurs cellulaires rend difficile d'avoir une vue d'ensemble du domaine.
Concepts en Immunologie
Du fait de la complexité des phénomènes étudiés et de leur intime imbrication, les immunologistes sont souvent réduits à utiliser des concepts plus ou moins abstraits pour interpréter les informations disponibles. Au fil du temps, de plus en plus de nouveaux concepts, se recoupant plus ou moins, se font jour dans la communauté scientifique, la plupart du temps en opposant deux notions opposées. La liste ci-dessous ne peut pas être exhaustive, mais donne un aperçu de quelques-unes de ces grandes notions. Elle reprend naturellement certains points déjà vu dans l'historique, mais les développe sous un aspect simplifié et plus pragmatique.
Antigène
Article détaillé : antigène.Le concept de base de l'immunologie de la réponse adaptative est celui d'antigène. Globalement, on qualifie d'antigène toute substance capable de faire réagir le système immunitaire adaptatif. En pratique et pour simplifier, il s'agit de toute substance dont la seconde introduction dans l'organisme produira un effet différent de la première.
Inné ou adaptatif
Concept important, celui du système "inné" et du système adaptatif (ou acquis, bien que ce terme soit de moins en moins utilisé). Il s'agit ici d'opposer des phénomènes "non-spécifiques" à des événements "spécifiques", sous-entendus "de l'antigène".
Dans le premier cas, il s'agit d'une réaction suivant l'introduction d'un nouvel élément, quel qu'il soit, et qui repose sur une réaction globale d'un type cellulaire. Toutes les cellules blessées, quelle qu'en soit la cause, ont des réactions similaires, et les cellules du système immunitaire réagissent de manières stéréotypées également. Cette réponse innée est rapide, sans mémoire et indépendante de l'antigène. Une multitude de situation (blessure, infection virale ou bactérienne, etc.) mènent à des réactions innées similaires.
La réponse adaptative concerne des phénomènes liés aux antigènes, et consiste en la sélection de clones de lymphocytes, capables de cibler ce qui est perçu comme une menace. Cette réponse adaptative est lente, strictement dépendante des antigènes, et possède une mémoire immunitaire. Chaque situation différente mènera à la sélection de quelques clones lymphocytaires qui prendront en charge le danger.
Cellulaire ou humoral
Article détaillé : Cellule immunitaire.Un des plus anciens concepts oppose une composante cellulaire à une composante soluble ("humorale") de l'immunité. Elle tient du fait que le sérum, donc débarrassé des cellules sanguines et du fibrinogene, peut produire des phénomènes rapides et très efficaces de destruction ("lyse") d'organismes cibles, d'une part et que les effets de certaines cellules immunitaires sont plus difficiles à observer, car sont plus lents et imposent des conditions d'expérimentation très strictes. Les deux types de phénomènes furent pendant longtemps impossibles à observer concomitamment. Cette opposition n'aura plus lieu d'être dès que les techniques permettront de prouver que ce sont bien des cellules immunitaires qui produisent ces facteurs solubles.
Th1 ou Th2
Article détaillé : Lymphocyte T.La découverte des rôles des cellules T CD4+ "helper" (Th), à savoir d'aider les réponses immunitaires, fit se dégager assez vite un fait expérimental: dans certaines conditions, les Th peuvent favoriser une réponse à médiation cellulaire, avec génération de cellules cytotoxiques, ou une réponse humorale, avec production d'anticorps. En d'autres termes, un même antigène dans des situations différentes induira parfois une réponse à médiation cellulaire, parfois une réponse à médiation humorale. Reprenant l'ancienne dichotomie cellulaire/humorale, le concept Th1/Th2 permet d'opposer les conditions dans lesquelles les T CD4+ réagissent en produisant des signaux dirigeant la réponse vers une cytotoxicité cellulaire, avec formation de cellules T CD8+ cytotoxiques ("CTL" pour "cytotoxic T lymphocytes") en grand nombre; ou au contraire la formation d'une réponse soluble, avec différentiation de lymphocytes B en plasmocytes, produisant des anticorps en grande quantité.
Soi ou non-soi
La réponse cellulaire fut pendant longtemps considérée comme résultant d'une reconnaissance directe par les cellules immunitaires des cellules étrangères. Autrement comment expliquer que des substances produisent une réaction forte chez un organisme et aucune chez un autre? L'introduction d'un élément étranger (infection ou greffe) doit être suivie d'une acceptation ou d'un rejet par le système immunitaire. Lors d'une greffe de peau par exemple, la peau prélevée sur le donneur était bien acceptée par le système immunitaire du donneur. Or, après la greffe, le système immunitaire du receveur peut bien décider de considérer la nouvelle peau comme étrangère, et la rejeter, alors qu'elle ne constitue en rien un danger. Ce concept reste très actuel, bien que ses mécanismes aient été en grande partie élucidés par l'étude des interactions entre les TCR et les molécules de CMH.
Immunogène ou tolérogène
Une autre question peut se poser: comment se fait-il que certains corps "étrangers" ne soient pas reconnus? La première notion est celle de "tolérance centrale", qui stipule qu'aucun organisme ne doit, à la base, produire des lymphocytes auto-réactifs, c'est-à-dire des lymphocytes réagissant contre les antigènes du "soi". La seconde notion est celle de tolérance périphérique. Elle repose sur des lymphocytes qui inhibent les réponses des autres cellules immunitaires, et dont l'action est très plastique. Le problème ici est donc de savoir dans quelles conditions l'introduction d'un élément étranger, d'un antigène, va ou bien induire une réponse immunitaire, auquel cas l'antigène est immunogène, ou bien produire une tolérance pour cet antigène. On parle dans ce cas de substance tolérogène.
Dangereux ou sans danger
La théorie du danger repose sur un constat simple: dans certaines situations, un même antigène peut être perçu comme sans danger (tolérogène), dangereux (immunogène), et dans le cas où il est immunogène, développer des réponses très différentes, réponses cellulaires ou différentes réponses anticorps, allant jusqu'à l'allergie. La théorie du danger stipule que ce sont les conditions dans lesquelles l'antigène est perçu qui déterminent le type de réponse immunitaire qui sera développé. Ces conditions particulières impliquent des signaux de danger en plus ou moins grand nombre et plus ou moins grande quantité, et qui accompagnent l'antigène. La combinaison des signaux de danger (ou leur absence) oriente la réponse immunitaire.
Les organes de l'immunité
L'ensemble des organes du système immunitaire s'appelle le système lymphoïde.
Organes lymphoïdes primaires ou centraux
- La moelle osseuse : c'est là que les cellules du système immunitaire sont produites, par un processus appelé hématopoïèse. C'est également le lieu de l'acquisition de l'immunocompétence des lymphocytes B.
- Le thymus : c'est là qu'a lieu la maturation et la séléction des lymphocytes T.
Organes lymphoïdes secondaires ou périphériques
- Au niveau du système sanguin, il y a des échappées de protéines. Ces protéines se retrouvent dans le liquide interstitiel et doivent retourner dans le sang afin de contrôler son osmolarité. Les capillaires lymphatiques récupèrent ces protéines et captent aussi les agents pathogènes, cellules du système immunitaire et débris de cellules mortes. Le système lymphatique entraîne la lymphe au niveau d'un centre intégrateur qui correspond aux ganglions lymphatiques. Après le passage de la lymphe dans le ganglion, la lymphe est épurée. La lymphe circule vers le cœur à sens unique. Elle rejoint la circulation sanguine au niveau du cœur par le canal thoracique et se jette dans la veine sous-clavière gauche.
- Les ganglions lymphatiques ont une structure plus ou moins globuleuse. Ils se décomposent en plusieurs zones.
- Un sinus capsulaire qui permet l'arrivée des vaisseaux lymphatiques afférents. La lymphe traverse le sinus entre dans le ganglion par l'intermédiaire de travées.
- Le cortex du ganglion est occupé par les lymphocytes B. Les cellules B sont regroupées en amas. Ce sont ces follicules qui grossissent en cas d'infection.
- Le paracortex abrite les lymphocytes T et les cellules dendritiques.
- Au centre, on a une zone de sortie avec autant de lymphocytes B que de lymphocytes T. C'est le hile par lequel sortent les vaisseaux lymphatiques efférents.
- Les appendices secondaires (formations lymphoïdes agrégées) ont des zones particulières d'épuration. Ce sont l’anneau de Waldeyer au carrefour aérodigestif (amygdales et végétations adénoïdes), l'appendice et les plaques de Peyer.
- La rate fait également partie du système immunitaire car elle épure le sang vis-à-vis des pathogènes qui pourraient s'y trouver.
Organes lymphoïdes tertiaires
Les organes lymphoïdes tertiaires comprennent tous les tissus et organes où la réponse immunitaire a lieu. Ils contiennent peu de cellules lymphoïdes dans les conditions physiologiques normales mais peuvent en importer une grande quantité lors de la présence d'un pathogène. Ils comprennent:
- La peau
- Le système respiratoire
- Le tube digestif -- voir GALT
- Le tractus génital -- voir MALT
- ...le reste du corps.
Il faut noter l'existence de sanctuaires immunitaires. Ce sont des tissus où les cellules immunitaires ne pénètrent pas; il s'agit des testicules et de la chambre antérieure de l'œil. Les lymphocytes naïfs ne peuvent pas franchir la barrière hémato-encéphalique.
Les différents types de réactions immunitaires
L'immunité humorale
Il s'agit des mécanismes de défense impliquant des facteurs solubles. Elle est de deux type: défense innée et défense adaptative.
Immunité humorale innée
Les défenses innées correspondent à des molécules présentes spontanément dans l'organisme et qui préexistent à la menace. Il s'agit des anticorps naturels, des défensines, du système du complément. Les tissus agressés produisent également des molécules de l'inflammation, tels que le facteur tissulaire et les dérivés de l'acide arachidonique: leucotriènes et prostaglandines
Immunité humorale adaptative
Elle est supportée par la présence d'anticorps circulants. Les anticorps sont produits par les plasmocytes, issus de la différenciation terminale d'un clone de lymphocyte B. Ce sont des molécules de type immunoglobuline de différents types:
- Les IgM qui sont les premiers produits lors d'une infection. Ils sont décavalents et leur avidité pour les antigènes est très grande. Ils ont un rôle majeur dans la formation de complexes immuns.
- Les IgG de haute affinité, ayant un rôle essentiel dans la cytotoxicité liée aux anticorps.
- Les IgE supports de l'allergie immédiate (réaction d'hypersensibilité type 1).
- Les IgA secrétés au niveau des muqueuses, jouent un rôle majeur dans la neutralisation des pathogènes présents sur les épithélia (bronches, tube digestif).
De manière générale, les anticorps agissent de deux manières différentes: soit par l'activation du complément, soit par fixation du complexe immun sur une cellule immunitaire possédant un récepteur pour le fragment constant des anticorps (tels que les macrophages, les lymphocytes NK par exemple)
L'immunité cellulaire
Les phénomènes immunitaires à médiation cellulaire impliquent différents types de cellule, regroupés dans deux concepts: les cellules de l'immunité innée et celles de l'immunité adaptative.
Cellules de l'immunité innée
Ce sont des cellules qui sont capables de réagir à un phénomène sans éducation préalable. Elles réagissent à des stimuli présents sur une variété de pathogènes, et indépendamment des antigènes. Il s'agit:
- des lymphocytes NK;
- des granulocytes, anciennement appelés polynucléaires;
- des macrophages;
- des cellules dendritiques, qui sont les meilleures cellules présentatrices d'antigènes.
Cellules de l'immunité adaptative
Il s'agit de réactions qui mettent en jeu des cellules de type lymphocyte T. Leur maturation dépend d'un stimulus antigénique et d'une éducation par une cellule présentatrice d'antigène. Leur activation face à une cible dépend de la présentation de l'antigène par la cellule cible. Les lymphocytes T ne sont donc capables de reconnaître que des cellules transformées (c'est-à-dire infectées par un pathogène intracellulaire, ou une cellule tumorale). Il y a deux types principaux de lymphocytes T:
- les lymphocytes CD8+ reconnaissent un antigène porté par une molécule de CMH de type I. Ils se différencient généralement en lymphocytes cytotoxiques et produisent relativement peu de cytokines;
- les lymphocytes CD4+ reconnaissent un antigène porté par une molécule de CMH de type II. Leur action principale est la sécrétion de cytokines, qui orientent et amplifient la réponse immunitaire, c'est ce qu'on nomme le "help" (en français: aide), d'où le surnom de "helper" donnés à ces lymphocytes T. Le paradigme actuel est de différencier deux types de CD4+: les lymphocytes helpers qui orientent vers une réponse cytotoxique ("Th1") et ceux qui orientent vers une réponse plus humorale ("Th2").
On retrouve également les lymphocytes B via la diversité de leurs BCR, qui sont des AC.
Les maladies de l'immunité
Les déficits immunitaires
Voir déficit immunitaire.
- Congénitaux
- À prédominance humorale, touchant les anticorps.
- À prédominance cellulaire.
- Combinés.
- Acquis
- Iatrogènes (chimiothérapie du cancer, traitement immunosuppresseur)
- Viraux (VIH SIDA)
- Liés à une pathologie sévère (leucémie, cancer évolué, etc.).
Les réactions immunitaires défavorables
- Les différents types d'allergie ou hypersensibilité.
- De type 1, dite "immédiate": Médiée par les IgE, rapide voire foudroyante.
- De type 2, appelée aussi "maladie sérique": Cytotoxicité directe des immunoglobulines.
- De type 3: Complexes immuns circulants.
- De type 4 dite "retardée": Allergie retardée d'immunité cellulaire.
- Les maladies auto-immunes.
- Les réactions à la transfusion sanguine.
- Le rejet de greffe d'organe.
L'immunologie en pratique
L'immunologie dans les laboratoires de diagnostic et dans la recherche
La connaissance des mécanismes immunologiques a permis le développement de nombreuses techniques d'analyses aussi bien quantitatives que qualitatives.
Techniques
Les principales techniques sont les réactions de précipitation, les réactions d'agglutination et les réactions de neutralisation.
La plupart de ces techniques utilisent les propriétés des anticorps monoclonaux. Leur affinité et leur spécificité de liaison à leur cible fait d'eux des outils incontournables de détection. Ils permettent de déterminer la présence d'un épitope particulier dans un échantillon, permettant ainsi dans les techniques comme le western blot ou l'ELISA de détecter des protéines, des isoformes de protéines, ou des modifications particulières de protéine (phosphorylation, acétylation, etc.).
La capacité de former des complexes immuns permet de provoquer l'agglutination et la précipitation de la cible avec les anticorps: c'est le principe de l'immunoprécipitation, utilisé en recherche pour déceler des interactions entre deux protéines ou pour purifier un composé dans une solution.
Une autre propriété des anticorps utilisée en clinique animale et depuis quelques années en clinique humaine est la faculté de certains isotypes d'anticorps à lier le complément, et donc de lyser les cellules à la surface desquelles ils sont fixés. En pratique, cela permet de détruire les cellules possédant un marqueur antigénique particulier.
Applications
Le diagnostic de l'infection par le VIH se base sur des détections d'anticorps circulants dans le serum des patients, de même que le diagnostic de l'infection par le virus de l'hépatite B. Le dosage de certaines hormones (hormones thyroïdiennes notamment) dans le sérum est également fait par turbidimétrie ou néphélométrie : les automates détectent l'opacification d'une solution, liée à la précipitation des complexes antigène-anticorps.
Par ailleurs, la détermination de la formule lymphocytaire fait appel à la cytométrie en flux, utilisant des anticoprs monoclonaux couplés à des molécules fluorescentes
L'immunologie dans la pratique médicale
L'utilisation de toutes sortes de vaccins a permis le triomphe de la médecine contre de nombreuses maladies infectieuses. Ainsi, la variole est éradiquée, et d'autres maladies sont des candidats à l'éradication par la vaccination : la rougeole, l'hépatite B par exemple. Ce sont des maladies causées par des virus dont l'être humain est le seul réservoir. La vaccination d'une grande partie de la population permettrait de les éradiquer. Ce sont des objectifs fixés par l'organisation mondiale de la santé[1].
Par ailleurs, il existe depuis 2006 un vaccins destiné à diminuer le risque de cancers du col de l'utérus. Ce vaccin est dirigé contre un virus responsable de la transformation des cellules épithéliales du col en cellules tumorales. Vacciner les jeunes filles avant leurs premiers contacts sexuels permettrait de diminuer de 80% les cas de cancer du col.
L'immunologie et l'étude du système immunitaire est un outil indispensable pour deux domaines particuliers : le rejet de greffe et les maladies auto-immunes. Parallèlement, l'immunologie des tumeurs étudie comment le système immunitaire interagit avec les cellules tumorales, dans le but d'influencer médicalement la puissance potentielle d'une réaction immunitaire dirigée contre une tumeur.
Voir aussi
Notes
Liens internes
- tolérance
- système immunitaire
- déficit immunitaire
- maladies auto-immunes.
- lymphocyte T.
- anticorps
- cellule présentatrice d'antigène
- antigène
- cytokine
- chimiokine
Liens externes
- Immunology Animations
- BMC: Immunology- BioMed Central:Immunology est un journal d'accès libre, publiant des articles de recherche (comité de lecture)
- Nature Reviews Immunology (page du journal)
- cours d'immunologie
Sources
- de:immunologie
- Wikibooks Immunology Textbook
- Goldsby RA, Kindt TK, Osborne BA and Kuby J (2003) Immunology, 5th Edition, W.H. Freeman and Company, New York, New York, ISBN 0-7167-4947-5
- Portail de la médecine
Catégorie : Discipline de la biologie
Wikimedia Foundation. 2010.