Clôture galoisienne

Clôture galoisienne

Extension de Galois

En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable.

L'ensemble des automorphismes de l'extension possède une structure de groupe appelé groupe de Galois. Cette structure de groupe caractérise l'extension ainsi que ces sous-corps.

Les extensions de Galois sont des structures largement utilisées pour la démonstration de théorèmes en théorie algébrique des nombres comme le Dernier théorème de Fermat ou en théorie de Galois pure comme le théorème d'Abel-Ruffini.

Sommaire

Motivation

Les problèmes initiaux

Joseph Louis Lagrange

La démarche qui débouche sur la notion d'extension de Galois provient de la volonté de résoudre des conjectures, souvent vieilles et provenant de différentes branches des mathématiques: l'algèbre avec l'étude des équations algébriques et particulièrement les équations polynômiales, la géométrie avec initialement les problèmes de la construction à la règle et au compas et particulièrement les trois grands problèmes de l'antiquité comme la duplication du cube et surtout les problèmes d'arithmétique comme le grand théorème de Fermat.

La philosophie de l'approche

Tous les problèmes initiaux cités s'expriment simplement, leurs énoncés ne demandent en effet qu'un niveau mathématique élémentaire. En revanche leurs résolutions ont demandé des siècles de patience. La raison réside dans le fait qu'une approche naïve ne permet que mal d'appréhender les finesses qu'impliquent les énoncés. Pour apporter des solutions, il est nécessaire de comprendre les structures sous-jacentes à chacune de ces questions. Une analyse directe impose une démarche calculatoire trop complexe pour aboutir.

Quitte a augmenter le niveau d'abstraction, il apparaît alors nécessaire de définir des structures algébriques pures, bénéficiant de théorèmes puissants qui résolvent ces vieux problèmes.

Cas de l'extension de Galois

Une extension de Galois est une construction algébrique utilisant trois structures, celle des groupes, celle des corps et celle des espaces vectoriels.

La structure de groupe permet par exemple l'analyse des permutations des racines d'un polynôme. Or l'analyse des permutations est la clé de la recherche des solutions algébriques d'une équation polynômiale. Dans le cas de l'équation quintique ou équation du cinquième degré, il existe 120 permutations possibles. Trouver quelles permutations utiliser et dans quel ordre, est apparu comme un problème combinatoire d'une complexité trop grande pour les mathématiciens comme Joseph-Louis Lagrange (1736 1813) qui se sont penchés sur cette question[1].

L'analyse systématique des groupes finis non plus sous un axe combinatoire, mais avec une approche abstraite permet, en échange d'une montée en abstraction, une résolution calculatoirement relativement simple par exemple pour le cas de l'équation quintique. Ludwig Sylow (1832 1918) démontre les trois théorèmes[2] qui terminent élégamment l'analyse des équations polynômiales.

Un théorème fondamental

L'extension de Galois est archétypale de cette approche algébrique pure.Et cette structure dispose d'un théorème puissant, à la base de toutes les résolutions modernes des différents problèmes cités. C'est le Théorème fondamental de la théorie de Galois. Ce théorème établit une relation entre un corps et un groupe. Il permet d'établir un pont entre la théorie des groupes et les problèmes d'algèbre de géométrie ou d'arithmétique étudié. Dans l'énoncé du théorème fondamental, le corps, le groupe et la correspondance entre les deux sont abstraits. En échange de cette abstraction, l'extension de Galois offre un cadre très général à l'étude de nombreux problèmes.

Histoire

À l'origine de l'abstraction : les groupes

Évariste Galois

Ce sont les polynômes qui ont initialisé la démarche qui finit par la construction des extensions de Galois. Lagrange remarque que la résolution d'une équation polynomiale par une méthode algébrique est intimement liée à l'étude de certaines permutations dans l'ensemble des racines. Il établit alors un premier théorème[3] qui est maintenant généralisé à tous les groupes finis. Paolo Ruffini (1765 1822) étudie plus spécifiquement le groupe des permutations d'ordre cinq, établit des résultats importants comme l'existence d'un sous-groupe d'ordre cinq et est le premier convaincu de l'impossibilité de la résolution générale d'une équation quintique[4]. Si l'analyse systématique des groupes de permutations est démarrée, elle est néanmoins insuffisante pour conclure.

Algèbre et géométrie

A l'aube du XIXe siècle Carl Friedrich Gauss (1777 1855) établit un nouveau lien entre l'algèbre des polynômes et la géométrie[5]. Il met en évidence le lien entre les polynômes cyclotomiques et la construction à la règle et au compas de polygones réguliers. Ces travaux permettent la construction du polygone régulier à 17 cotés. Si Gauss a l'intuition que cette démarche permet la résolution des trois grands problèmes de l'antiquité, il faut néanmoins attendre le résultat des travaux[6] de Pierre-Laurent Wantzel (1814 1848) pour conclure.

La structure de groupe abstraite

La naissance de l'algèbre moderne est généralement attribuée à Evariste Galois (1811 1832). Il est en effet le premier à utiliser une démarche totalement abstraite et à parler de la structure de groupe en général. Ces travaux sont redécouverts après sa mort par Joseph Liouville (1809 1882) en 1843 qui les publie[7]. L'algèbre abstraite entre alors dans le domaine de l'arithmétique et Liouville utilise cette théorie pour réaliser une percée majeure en 1844 dans le domaine de la théorie des nombres en démontrant l'existence de nombres transcendants.

La structure d'anneau et de corps

Pour obtenir de nouvelles percées dans le domaine de l'arithmétique Ernst Kummer (1810 1893) poursuit les travaux de Gauss sur les polynômes cyclotomiques et met en évidence la notion de nombre complexe idéal et prouve dans de nombreux cas le grand théorème de Fermat. Une démarche analogue à celle des groupes permet petit à petit de dégager la notion abstraite d'anneau et de corps, elle apparaît pour la première fois sous la plume [8] de Richard Dedekind (1831 1916).

La formalisation moderne de la structure d'anneau provient d'une synthèse[9] de David Hilbert (1862 1943). Elle contient l'origine de la théorie des corps de classe. La théorie générale des corps apparaît plus tard, à la suite des travaux[10] de Ernst Steinitz (1871 1928). Cette théorie contient les concepts modernes comme l'extension de corps la dimension d'une extension ou l'extension séparable. La formalisation actuelle de l'extension de Galois et du théorème fondamental de la théorie de Galois est l'œuvre d'Emil Artin (1898 1962).

Définitions et exemples

Définitions

Dans la suite de l'article K est un corps, L une extension algébrique de K, l un élément de L et Ω la clôture algébrique de K. L est identifié à un sous-corps de Ω, ce qui ne nuit en rien à la généralité de l'exposé comme indiqué dans l'article clôture algébrique d'une extension dans le cas ou l'extension est finie.

  • Une extension est dite normale si et seulement si tout morphisme de L, laissant invariant K est un automorphisme de L.

Remarque: Un morphisme de corps est toujours injectif. Le morphisme est aussi un morphisme d'espace vectoriel car L dispose d'une structure d'espace vectoriel sur K. Donc, si L est une extension finie, alors il suffit que le morphisme ait une image incluse dans L pour qu'un argument de dimension prouve la surjectivité.

  • Une extension est dite de Galois ou galoisienne si et seulement si elle est normale et séparable.

Remarque: Une extension est dite séparable si et seulement si tout élément l admet un polynôme minimal sur K n'ayant aucune racine multiple. L'article sur les extensions algébriques évoque succinctement l'existence d'un polynôme minimal. Et si K est un corps parfait par exemple parce qu'il est de caractéristique 0 comme les nombres rationnels, les nombres réels ou les nombres complexes ou parce qu'il est fini, alors L est toujours séparable (cf Extension séparable).

Remarque: Gal(L/K) est un ensemble non vide car il contient au moins l'identité. On peut vérifier qu'il possède une structure de groupe.

Exemples

Le corps des nombres complexes est une extension de Galois du corps des nombres réels. C'est une extension simple (c’est-à-dire engendrée par le corps des nombres réels et un seul élément supplémentaire) dont le groupe de Galois est le groupe cyclique d'ordre 2.

L'extension simple engendrée par la racine cubique de deux sur le corps des rationnels n'est pas une extension de Galois. En effet, ce corps ne contient pas toutes les racines, il existe donc un morphisme de L dont l'image n'est pas L.

L'extension engendrée par la racine cubique de deux et i, le nombre imaginaire pur, est une extension de Galois. Cette extension est de dimension six et contient un groupe de Galois isomorphe au groupe de permutation de trois éléments.


Propriétés

Propriétés élémentaires

Les propriétés établies pour les extensions séparables possèdent des corollaires dans le cas des extensions de Galois. Ce sont ces corollaires qui sont énoncées ici. Ce sont essentiellement des conséquences du théorème de l'élément primitif démontré dans l'article Extension séparable.

  • Le cardinal du groupe de Galois est inférieur ou égal à la dimension de L sur K.

Remarque: c'est une conséquence directe de la deuxième proposition du paragraphe Morphisme dans la clôture algébrique.

  • Le cardinal du groupe de Galois est égal à la dimension de L sur K si et seulement si l'extension est galoisienne.
  • On suppose que L est une extension finie (c’est-à-dire que la dimension de L sur K est finie). le fait que tout polynôme irréductible à coefficients dans K ayant au moins une racine dans L ait toutes ses racines dans L est une condition nécessaire et suffisante pour que l'extension L soit normale sur K.


Théorème fondamental de la théorie de Galois

Article détaillé: Théorème fondamental de la théorie de Galois

Il existe une correspondance entre les sous-corps d'une extension de Galois de dimension finie et les sous-groupes du groupe de Galois. Cette correspondance établit une équivalence entre certaines propriétés des sous-corps et celle des sous-groupes. Par exemple un sous-corps est une extension galoisienne si et seulement si le sous-groupe associé est distingué. Dans le cadre de la théorie des extensions finies, cette correspondance est un résultat fondamental de la théorie de Galois. Quatre propriétés résument cette correspondance:

  • Lemme d'Artin: Soit L un corps et G un groupe fini d'automorphismes de corps de L. Alors l'ensemble K des éléments laissés invariants par chaque élément de G est un sous-corps. De plus, L est une extension galoisienne de K.

Soit L une extension de Galois de dimension finie sur K et G son groupe de Galois. Soit H un sous-groupe de L et LH l'ensemble de L contenant tous les éléments de L invariant par chaque élément de H. Alors les deux propositions suivantes sont vérifiées:

  • L'ensemble des éléments de L laissés invariants par tous les membres de G est K.
  • Soit F un sous-corps de L, alors L est une extension galoisienne de F et le groupe de Galois associé est l'ensemble des éléments de G qui laisse F invariant.

Ces propositions permettent de démontrer le:

  • Théorème fondamental de la théorie de Galois.

LH est un sous-corps de L, L est une extension galoisienne de LH et H est le groupe de Galois de l'extension L de LH.

L'application de l'ensemble des sous-groupes du groupe G dans les sous-corps de L qui à chaque sous-groupe H associe LH est une bijection.

L'extension LH de K est galoisienne si et seulement si H est un sous-groupe distingué de G. Alors le groupe de Galois de LH est isomorphe au groupe quotient G/H.

Remarque: la démonstration est données dans l'article détaillé.


Voir aussi

Notes

  1. Joseph-Louis Lagrange Réflexions sur la résolution algébrique des équations 1770
  2. Ludwig Sylow Théorèmes sur les groupes de substitutions 1872
  3. Théorème de Lagrange
  4. Paolo Ruffini Théorie général des équations dans lequel il est montré que la résolution générale d'une équation d'ordre supérieure à quatre est impossible 1799
  5. Carl Friedrich Gauss Disquisitiones Arithmeticae 1801
  6. Pierre-Laurent Wantzel sur les moyens de reconnaître si un problème peut se résoudre avec la règle et le compas 1837
  7. Evariste Galois Manuscrit de Galois dans Journal des mathématiques pures et appliquées 1846
  8. Richard Dedekind Lehrbuch des Algebra 1871
  9. David Hilbert Rapport sur les nombres1897
  10. Ernst Steinitz Théorie algébrique des corps 1910

Liens externes

Références

  • Adrien Douady et Régine Douady, Algèbre et théories galoisiennes [détail des éditions]
  • Serge Lang, Algèbre, Dunod, 2004, 926 p. (ISBN 2100079808) [détail des éditions]
  • Pierre Samuel, Théorie algébrique des nombres [détail des éditions]
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Extension de Galois ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Clôture galoisienne de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Clôture séparable — En mathématiques, une clôture séparable d un corps commutatif K est une extension algébrique séparable de K, et maximale (au sens de l inclusion) pour cette propriété. Définition Un corps K est séparablement clos si toute extension finie… …   Wikipédia en Français

  • Extension galoisienne — Extension de Galois En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de …   Wikipédia en Français

  • Extension de Galois — En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de Galois. Cette… …   Wikipédia en Français

  • Extension De Galois — En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de Galois. Cette… …   Wikipédia en Français

  • Extension de galois — En mathématiques, une extension de Galois (parfois nommée extension galoisienne) est une extension de corps finie normale séparable. L ensemble des automorphismes de l extension possède une structure de groupe appelé groupe de Galois. Cette… …   Wikipédia en Français

  • CORPS (mathématiques) — La structure de corps n’est en fait qu’un cas particulier de la structure plus générale d’anneau [cf. ANNEAUX ET ALGÈBRES]; en plus des axiomes généraux, on stipule que le groupe multiplicatif des éléments inversibles est le complémentaire de 0.… …   Encyclopédie Universelle

  • Théorème fondamental de la théorie de Galois — En mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d une extension finie de corps et leurs groupes de Galois, dès lors que l… …   Wikipédia en Français

  • Extension normale — En mathématiques, une extension normale L de K est un cas particulier d extension de corps. Une extension algébrique est dite normale ou quasi galoisienne si et seulement si tout morphisme de corps de L dans un corps le contenant et induisant l… …   Wikipédia en Français

  • Formation De Classes — En mathématiques, une formation de classes est une structure utilisée pour organiser les divers groupes de Galois et les modules qui apparaissent dans la théorie des corps de classes. Ils ont été inventées par Emil Artin et John Tate. Plus… …   Wikipédia en Français

  • Formation de classes — En mathématiques, une formation de classes est une structure utilisée pour organiser les divers groupes de Galois et les modules qui apparaissent dans la théorie des corps de classes. Ils ont été inventées par Emil Artin et John Tate. Plus… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”