Histoire des ordinateurs

Histoire des ordinateurs

Cet article présente les avancées majeures dans lévolution de linformatique. Pour une chronologie détaillée, voir : Chronologie informatique.

LENIAC

Si les premiers ordinateurs sont apparus pendant la seconde guerre mondiale, avec l'ENIAC, le Z3 et le principe de la machine de Turing, on fait généralement remonter lhistoire des ordinateurs bien plus tôt, dès l'époque des premières machines à calculer mécaniques (XVIIe siècle) et des premières machines à tisser automatisées par la lecture de cartes et de rubans perforés (XVIIIe siècle).

Sommaire

Précurseurs

Premiers outils de calcul

Depuis des milliers dannées, lHomme a créé et utilisé des outils laidant à calculer. Au départ, la plupart des sociétés utilisent sans doute la main (d' le système décimal), ainsi que dautres parties du corps, comme auxiliaires de calcul. Puis apparaissent les entailles dans du bois, les entassements de cailloux, de coquillages ou dosselets (il est intéressant de remarquer que le mot « calcul » provient du mot latin, calculi qui signifie « cailloux »). Le premier exemple doutil plus complexe est labaque, qui connait diverses formes, jusquau boulier toujours utilisé en Chine et en Russie.

Algorithmes et logarithmes

Les algorithmes les plus anciens sont attestés par des tables datant de lépoque dHammurabi (env. -1750).

Mohamed Ybn Moussa al-Khawarezmi passe pour être le père de la théorie des algorithmes ainsi que de l'algèbre (de l'arabe « Al-jabr » signifiant « compensation »).

Vers 1617, John Napier invente une sorte dabaque perfectionné. Sa formulation des logarithmes démontre que la multiplication et la division peuvent se ramener à une série d'additions.

Cela permet en 1625 à William Oughtred de développer la règle à calcul qui est utilisée par de nombreux ingénieurs jusquà lapparition des calculatrices de poche. Ainsi, une grande partie des calculs nécessaires au programme Apollo ont été -dit-on- effectués avec des règles à calcul.

Premiers calculateurs mécaniques

Une Pascaline, signée par Pascal en 1652

Blaise Pascal est le premier à présenter une machine arithmétique à des témoins dignes de foi, il est donc crédité de l'invention de la machine à calculer, la pascaline, en 1642[1]. C'est la première machine qui peut effectuer les quatre opérations arithmétiques sans utiliser l'intelligence humaine (mais les multiplications et divisions sont effectuées par répétitions).

En 1673, Gottfried Leibniz en perfectionne le principe pour la rendre capable deffectuer des multiplications, des divisions et même des racines carrées, le tout par une série dadditions sous la dépendance dun compteur.

Système binaire : le retour

Leibniz est le premier à réaliser la simplicité du système de numération binaire (vieux de plus de quatre mille ans ! ) dans les opérations arithmétiques [2] ; Thomas Fantet De Lagny, un contemporain de Leibniz, remarqua qu'en arithmétique binaire les multiplications et divisions sexécutent par de simples additions et soustractions: «Tout se passe comme si les nombres étaient leurs propres logarithmes»[3]. Le système binaire est parfaitement adapté aux opérations logiques et arithmétiques et sera utilisé dans les futurs ordinateurs (soit sous forme de binaire pur pour les machines scientifiques, soit sous forme de décimal codé binaire, ou DCB, pour les machines commerciales qui font plus dentrée-sortie que de calcul). Néanmoins, jusquen 1945, la plupart de la dizaine de machines construites furent basées sur le système décimal, plus difficile à implanter.

Premières machines programmables

La principale marque dun ordinateur est sa programmabilité. Celle-ci permet à lordinateur démuler toute autre machine à calculer en changeant la séquence des instructions disponibles.

Métier à tisser

En 1725, Basile Bouchon, un Lyonnais, met au point le premier système de programmation dun métier à tisser grâce à un ruban perforé[4]. En 1728, Jean-Baptiste Falcon, son assistant, remplace le ruban par une série de cartes perforées reliées entre elles. Jacques de Vaucanson reprend cette idée en remplaçant ruban et cartes perforées par un cylindre métallique et enfin Joseph Marie Jacquard lie le tout dans son métier à tisser qui fut adopté dans le monde entier et qui démontra qu'une machine pouvait être minutieuse, consistante et dépendante.

« Sans reprendre l'histoire de Jacquard et entrer dans le vif des discussions interminables, lui attribuant ou lui enlevant le mérite de cette innovation, nous adopterons l'avis généralement partagé et que nous croyons sincère, que c'est Jacquard qui eut l'idée de réunir: les aiguilles et les crochets de Basil Bouchon, les cartons enlacés de Falcon et de remplacer le cylindre rond de Vaucanson par un parallélépipède improprement encore appelé de nos jours cylindre carré. De plus, il arma son cylindre d'une lanterne, ceci est incontestablement le fait personnel de Jacquard »

— C. Razy, Étude analytique des petits modèles de métiers exposés au musée historique des tissus, 1913

Machine à calculer programmable

En 1834, Charles Babbage, inspiré par le métier Jacquard, décrit sa machine analytique. Cest un calculateur mécanique programmable, fonctionnant à la vapeur, qui utilise des cartes perforées pour ses données et ses instructions[5]. Bien que sa théorie ait été correcte, le manque de pièces mécaniques suffisamment précises et de financement public firent obstacle à la construction de cette machine. Ada Lovelace créa une série de programmes (suite de cartes perforées) pour cette machine, ses efforts firent delle la première programmeuse du monde.

Évolution des machines à calculer

En 1885, les calculateurs sont agrémentés de claviers qui facilitent l'entrée des données. Par la suite, lélectricité permet de motoriser les calculateurs mécaniques et de remplacer certains mécanismes, ( comme les manivelles ) par de l'électromécanique.

Essor de l'informatique

Fin du XIXe siècle

Le recensement de la population des États-Unis de 1880 prit sept ans à analyser. Un appel d'offre pour un système d'analyse plus rapide fut lancé avant le recensement de 1890. Des trois offres soumises, c'est la solution d'Herman Hollerith qui fut choisie car elle utilisait des cartes perforées qui la rendait deux fois plus rapide que les deux autres qui utilisaient un système de cartes de couleur. Herman Hollerith travailla pour le bureau du recensement de 1890 à 1894, puis en 1896, il créa the Tabulating Machine company qui sera une des trois compagnies dont la fusion est à l'origine d'IBM[6]. Herman Hollerith utilisa pour les statistiques le principe de la carte perforée, rendu populaire par le métier à tisser de Jacquard[7].

Début du XXe siècle

  • Fredrik Rosing Bull dépose le 31 juillet 1919 un brevet pour une « trieuse-enregistreuse-additioneuse combinée à cartes perforées », qui donnera naissance à une gamme de matériel concurrente d'IBM .
  • Le survol du XXe siècle permet d'avancer plusieurs raisons à l'essor fulgurant de l'informatique :
    • les progrès dans la réflexion sur les fondements de la Logique et des Mathématiques : la volonté de fonder les Mathématiques par la Logique aboutit à un échec ;
    • les progrès de l'électronique ;
    • la mobilisation de moyens militaro-industriels au moment de la Seconde Guerre mondiale dépasse l'ambition des programmes nationaux habituels d'aide au développement.

Calculateurs analogiques

Avant la Seconde Guerre mondiale, les ordinateurs analogiques, quils fussent mécaniques ou électriques, étaient considérés comme le dernier cri de la technologie et beaucoup pensaient quils seraient le futur de linformatique. Ces ordinateurs analogiques utilisaient des quantités physiques, telles que la tension, le courant ou la vitesse de rotation des axes, pour représenter les nombres. Ainsi, ils devaient être reprogrammés manuellement à chaque nouveau problème. Leur avantage par rapport aux premiers ordinateurs numériques était leur capacité à traiter des problèmes plus complexes, avec une certaine forme de parallélisme.

Les calculateurs stochastiques, la grandeur physique était remplacée par une probabilité, parurent sur le moment être lavenir du calculateur analogique : ils étaient en effet bon marché, faciles à produire en masse, et rapides (en particulier pour les multiplications). Mais les ordinateurs numériques, plus faciles encore à programmer, remplacèrent ces ordinateurs analogiques.

Première génération dordinateurs (1936-1956)

En 1936, la publication de l'article fondateur de la science informatique (en) [PDF] On Computable Numbers, with an Application to the Entscheidungsproblem par Alan Mathison Turing allait donner le coup d'envoi à la création de l'ordinateur programmable. Il y présente sa machine de Turing, le premier calculateur universel programmable, et invente les concepts de programmation et de programme.

Enigma, une machine de chiffrement électromécanique à cylindres ; la version ci-dessus est probablement militaire, mais est similaire à la version commerciale Enigma-D

Lère des ordinateurs modernes commença avec les grands développements de la Seconde Guerre mondiale. Les circuits électroniques, tubes à vide, condensateurs et relais remplacèrent leurs équivalents mécaniques et le calcul numérique remplaça le calcul analogique. Les ordinateurs conçus à cette époque forment la première génération dordinateurs.

Vers 1954, les mémoires magnétiques (tores de ferrite pour la mémoire vive, bandes, ensuite disques amovibles puis fixes pour la mémoire de masse) supplantèrent toute autre forme de stockage et étaient dominantes au milieu des années 1960.

De nombreuses machines électromécaniques furent construites avec des capacités diverses. Elles neurent quun impact limité sur les constructions à venir.

Les premiers calculateurs programmables

En 1938, Konrad Zuse commença la construction des premières séries-Z, des calculateurs électromécaniques comportant une mémoire et une programmation limitée. Zuse fut soutenu par la Wehrmacht qui utilisa ces systèmes pour des missiles guidés. Les séries-Z furent les précurseurs de nombreuses avancées technologiques telles que larithmétique binaire et les nombres en virgule flottante.

Konrad Zuse mit au point cette année- le Z1 (ou Versuchsmodell), qui ne fonctionna jamais vraiment correctement faute de crédits de développement (le Troisième Reich ne croyait guère à lidée de Zuse).

La même année, John Vincent Atanasoff et Clifford E. Berry, de luniversité de lÉtat de lIowa, développèrent lordinateur Atanasoff-Berry, un additionneur 16 bits binaire. Cette machine avait pour but de résoudre des systèmes déquations linéaires. La mémoire était stockée à laide de condensateurs fixés à un tambour rotatif.

En novembre 1939, John Vincent Atanasoff et Clifford E. Berry achevèrent lABC (Atanasoff Berry Computer). Composé de lampes et de tambours pour la mémoire, il fut construit pour résoudre des systèmes déquations linéaires. Bien que nétant pas programmable, il était basé sur trois idées propres aux ordinateurs modernes : lutilisation du système binaire (plus fiable et plus simple à mettre au point que le système décimal), la séparation entre le calcul et la mémoire et lutilisation de composants électroniques plutôt que des éléments mécaniques pour réaliser les calculs. Il pouvait stocker 60 mots de 50 bits dans ses deux tambours, fonctionnait à une vitesse dhorloge de 60 Hz et réalisait 30 additions par seconde.

En 1940, George Stibitz et Samuel Williams achevèrent le Complex Number Computer (ou Model I), un calculateur à base de relais téléphoniques. Ce fut la première machine utilisée à distance via une ligne de téléphone. Il réalisait une multiplication en une minute.

En 1941, Konrad Zuse construit le Z3. Il était basé sur 2 600 relais de téléphone, lisait les programmes sur bandes magnétiques et fonctionnait parfaitement, ce qui en fit le premier ordinateur programmable fonctionnel. Il utilisait larithmétique binaire et les nombres à virgule flottante. Le Z3 pouvait enregistrer 64 nombres de 22 bits, avait une fréquence de 5,33 Hz et réalisait quatre additions par seconde ou 15 multiplications en une minute. A posteriori, il a été déterminé qu'il était Turing-complet, bien que rien n'indique qu'il ait été conçu pour cela.

En 1944, le Harvard Mark I (ou lASCC, Automatic Sequence Controlled Calculator) fut mis au point par Howard H. Aiken chez IBM. Cétait une machine de calcul décimal qui lisait les programmes depuis une bande de papier. Elle pesait cinq tonnes et occupait une place de 37 mètres carrés. Elle était composée de plusieurs calculateurs qui travaillaient en parallèle et réalisait trois opérations sur 23 chiffres par seconde.

Pendant la Seconde Guerre mondiale, le Royaume-Uni fit de grands efforts à Bletchley Park pour déchiffrer les codes des communications militaires allemands. Le principal système de chiffrement allemand, Enigma (et ses différentes variantes), fut attaqué avec laide de machines appelées bombes, créées par les services secrets polonais et améliorées par les Britanniques, qui permettaient de trouver les clés de chiffrement après que dautres techniques en eurent réduit le nombre possible. Les Allemands créèrent également une autre série de systèmes de chiffrement (appelés FISH par les Britanniques) très différents dEnigma. Pour casser ces systèmes, le professeur Max Newman et ses collègues fabriquèrent Colossus ou la « bombe de Turing », il n'était pas Turing-complet bien qu'Alan Turing ait travaillé au projet. À la fin de la guerre, il fut démonté et caché à cause de son importance stratégique.

Colossus était la première machine totalement électronique, elle utilisait uniquement des tubes à vide et non des relais. Elle était composée de 2 000 tubes à vide et lisait des rubans perforés à la vitesse de 5 000 caractères par seconde. Colossus implémentait les branchements conditionnels. Neuf machines ont été construites sur le modèle Mk II ainsi quune dixième lorsque la seule Mk I a été convertie en Mk II. Lexistence de cette machine a été tenue secrète jusque dans les années 1970 ce qui explique pourquoi de nombreuses histoires de linformatique nen font pas mention. Il a été dit que Winston Churchill a personnellement donné lordre de leur destruction en pièces de moins de vingt centimètres pour conserver le secret. Il existe actuellement un projet actif pour reconstruire une de ces machines..

Les premiers ordinateurs

LENIAC

Début 1946, Presper Eckert et John William Mauchly achevèrent lENIAC (Electronic Numerical Integrator and Computer), qui est le premier ordinateur entièrement électronique construit pour être Turing-complet. Il avait été commandé en 1942 par larmée américaine afin deffectuer les calculs de balistique. LENIAC utilisait des tubes à vide (au nombre de 17 468) contrairement au Z3 qui utilisait des relais mécaniques. Néanmoins, il faisait ses calculs en système décimal. Malgré la véhémence de ses détracteurs qui auguraient de sa fragilité (celles des tubes à vide), il était très fiable pour lépoque et pouvait calculer plusieurs heures entre deux pannes. Physiquement cétait un monstre: il pesait plus de 30 tonnes, occupait 72 m² et consommait une puissance de 160 kW. Il tournait à 100 kHz, était composé de 20 calculateurs fonctionnant en parallèle et pouvait effectuer 100 000 additions ou 357 multiplications par seconde.

À partir de 1948 apparurent les premières machines à architecture de von Neumann : contrairement à toutes les machines précédentes, les programmes étaient stockés dans la même mémoire que les données et pouvaient ainsi être manipulés comme des données. La première machine utilisant cette architecture était le Small-Scale Experimental Machine (SSEM) construit à luniversité de Manchester en 1948. Le SSEM fut suivi en 1949 par le Manchester Mark I qui inaugura un nouveau type de mémoire composée de tubes cathodiques. La machine était programmée avec le programme stocké en mémoire dans un tube cathodique et les résultats étaient lus sur un deuxième tube cathodique.

Parallèlement, luniversité de Cambridge développa lEDSAC, inspiré des plans de lEDVAC, le successeur de lENIAC. Contrairement à lENIAC qui utilisait le calcul en parallèle, lEDVAC et lEDSAC possédaient une seule unité de calcul. Il utilisait un type de mémoire différent du Manchester Mark I, constitué de lignes à retard de mercure. LEDSAC tournait à une vitesse dhorloge de 0,5 MHz.

On peut considérer que larchitecture de tous les ordinateurs actuels dérive de celle de Manchester Mark I / EDSAC / EDVAC, ils sont dits de type von Neumann.

En 1950 naquit le premier ordinateur soviétique, le MESM (МЭСМ en russe, Small Electronic Calculating Machine), sous la direction de Sergei Alexeevich Lebedev à linstitut dÉlectrotechnologie de Kiev. Il était composé de 6 000 tubes à vide, consommait 25 kW et réalisait 3 000 opérations par seconde.

En février 1951, le premier modèle de Ferranti Mark I, version commerciale du Manchester Mark I et premier ordinateur commercial de lhistoire, est vendu. Il sen vendra 9 jusquen 1957.

Quatre mois plus tard, P. Eckert et J. Mauchly de Remington Rand commercialisèrent lUNIVAC I (Universal Automatic Computer). Contrairement aux machines précédentes, il ne lisait pas des cartes perforées mais des cassettes métalliques. Il possédait 5 200 tubes à vide, avait une mémoire à lignes à retard de mercure de 1 000 mots de 72 bits et consommait 125 kW. Il exécutait 8 333 additions ou 555 multiplications par seconde. 46 exemplaires furent vendus au total, à plus dun million de dollars lunité.

En avril 1952, IBM produit son premier ordinateur, lIBM 701, pour la défense américaine. LIBM 701 utilisait une mémoire à tubes cathodiques de 2 048 mots de 36 bits. Il effectuait 16 000 additions ou 2 200 multiplications par seconde. 19 machines seront installées au total.

La même année, IBM est contacté pour mettre en chantier la production des ordinateurs du réseau SAGE. Une cinquantaine de machines, portant le nom AN/FSQ7, sera produite. Chaque machine comportait 75 000 tubes, pesait 275 tonnes et consommait 750 kW.

En juillet 1953, IBM lance lIBM 650, ordinateur scientifique comme tous ceux des séries 600 (son successeur sera le 1620). Réalisé à partir de tubes à vide, l'IBM 650 avait une mémoire à tambour de 2 000 mots de 10 digits, mais il était relativement lent. Il se présentait en 2 modules de 2,5 m³, l'un de 900 kg contenant l'ordinateur, l'autre de 1350 kg contenant son alimentation électrique. Il coûtait 500 000 $ ou pouvait être loué 3 500 $ par mois. Environ 2 000 unités furent produites jusquen 1962.

En avril 1955, IBM lance lIBM 704, premier ordinateur commercial capable aussi de calculer sur des nombres à virgule flottante. Larchitecture du 704 a été significativement améliorée par rapport au 701. Il utilisait une mémoire à tores de ferrite de 32 768 mots de 36 bits, bien plus fiable et plus rapide que les tubes cathodiques et les autres systèmes utilisés jusqualors. Daprès IBM, le 704 pouvait exécuter 40 000 instructions par seconde. 123 machines seront vendues jusquen 1960.

Deuxième génération (1956-1963)

La deuxième génération dordinateurs est basée sur linvention du transistor en 1947. Cela permit de remplacer le fragile et encombrant tube électronique par un composant plus petit et fiable. Les ordinateurs composés de transistors sont considérés comme la deuxième génération et ont dominé linformatique dans la fin des années 1950 et le début des années 1960.

En 1955, Maurice Wilkes inventa la microprogrammation, désormais universellement utilisée dans la conception des processeurs. Le jeu d'instructions du processeur est défini par ce type de programmation.

Ramac 305 à l'arsenal de Red River de l'U.S. Army. Au premier plan : deux lecteurs de 350 disques ; au fond : console 380 et unité de calcul 305

En 1956, IBM sortit le premier système à base de disque dur, le Ramac 305 (Random Access Method of Accounting and Control). L'IBM 350 utilisait 50 disques de 24 pouces en métal, avec 100 pistes par face. Il pouvait enregistrer cinq mégaoctets de données et coûtait 10 000 $ par mégaoctet.

Le premier langage de programmation universel de haut niveau à être implémenté, le Fortran (Formula Translator), fut aussi développé par IBM à cette période (Le Plankalkül, langage de haut niveau développé par Konrad Zuse en 1945 navait pas encore été implémenté à cette époque.)

En 1958 , la Compagnie des Machines Bull (France), lance Le Gamma 60 : Premier ordinateur multitâches dans le monde et un des premiers à embarquer plusieurs processeurs (voir multiprocesseur). Il comportait aussi plusieurs unités d'entrée et de sortie : tambours magnétiques, bandes magnétiques, lecteurs de cartes, perforateurs de cartes, imprimantes, lecteurs de bande papier, perforateurs de bande papier, et un terminal.

En 1959, IBM lança lIBM 1401 (commercial), qui utilisait des cartes perforées. Il fut le plus grand succès dans lhistoire de linformatique avec 12 000 unités vendues. Il utilisait une mémoire magnétique de 4 000 caractères (étendue plus tard à 16 000 caractères).

En 1960, IBM lança lIBM 1620 (scientifique). Il écrivait à lorigine sur des rubans perforés, mais évolua rapidement pour utiliser des lecteurs de cartes perforées comme le 1442. 2 000 unités furent vendues. Il utilisait une mémoire magnétique de 60 000 caractères décimaux. Un exemplaire opérationnel fut longtemps présent au palais de la Découverte.

En 1960, lIBM 7000 est le premier ordinateur à base de transistors.

La même année, Digital Equipment Corporation (DEC) lança le PDP-1 (Programmed Data Processor). Le PDP-1 était le premier ordinateur interactif et a lancé le concept de mini-ordinateur. Il avait une vitesse dhorloge de 0,2 MHz et pouvait stocker 4 096 mots de 18 bits. Il effectuait 100 000 opérations par seconde. Vendu pour seulement 120 000 $ environ, il était le premier ordinateur accessible sur le simple budget dun (gros) service sans remonter à la direction générale.

En 1960, la Société d'Électronique et d'Automatisme (SEA) commercialise la CAB500[8], véritable ordinateur personnel. Ses caractéristiques - interactivité, souplesse d'emploi, compacité et faible prix - la différencient des mainframes de l'époque. Le travail de l'utilisateur est facilité par le langage Programmation Automatique des Formules (PAF), qui traduit les fonctions explicites en langage machine. Plus d'une centaine d'exemplaires sont commercialisés, notamment dans les universités ou les écoles d'ingénieurs, et contribuent à former la première génération d'informaticiens français[9].

En 1960, des Français sortaient le Serel OA-1001 [10], une machine 18 bits +signe +parité, 4 kmots, 100 kHz, purement binaire dédiée au contrôle de processus ou aux calculs scientifiques. Elle sera bientôt suivie par une version plus petite le Serel ODP-505, 3 fois plus rapide.

Troisième génération (1963-1971)

Premiers ordinateurs à circuits intégrés

La troisième génération dordinateurs est celle des ordinateurs à circuit intégré. Cest à cette date que lutilisation de linformatique a explosé.

En 1964 IBM annonça la série 360, première gamme dordinateurs compatibles entre eux et première gamme aussi à combiner par conception le commercial et le scientifique. Plus de 14 000 ordinateurs IBM 360 furent vendus jusquen 1970, date on les remplaça par la série 370 beaucoup moins chère à puissance égale (mémoires bipolaires à la place des ferrites).

Toujours en 1964, DEC lança le PDP-8, machine bien moins encombrante destinée aux laboratoires et à la recherche. Il avait une mémoire de 4 096 mots de 12 bits et tournait à 1 MHz. Il pouvait effectuer 100 000 opérations par seconde. Le PDP-8 se taillera rapidement une place de choix dans les laboratoires, aidé par son langage FOCAL facile à maîtriser.

En 1966, Hewlett-Packard entra dans le domaine des ordinateurs universels (par opposition aux ordinateurs spécifiques) avec son HP-2115. Celui-ci supportait de nombreux langages, dont lAlgol et le Fortran, comme les « grands ». Le BASIC y sera adjoint plus tard.

En 1967, le gouvernement français lance le Plan Calcul destiné à assurer lindépendance du pays en matière de gros ordinateurs.

En 1969, Data General vendit un total de 50 000 ordinateurs Nova à 8 000 $ lunité. Le Nova était lun des premiers mini-ordinateurs 16 bits. La version Supernova qui lui succédera en 1971 effectuait une multiplication en une microseconde, performance spectaculaire à lépoque. Le processeur principal était contenu sur un circuit imprimé de 15 pouces. Dans le même temps, grâce à une politique de mise en commun gratuite de logiciels particulièrement novatrice (et vue aujourdhui comme lancêtre de lOpen Source), lIBM 1130 se tailla la part du lion dans les écoles dingénieurs du monde entier.

Le circuit intégré a été inventé par Jack St. Clair Kilby en 1958. Le premier circuit intégré a été produit en septembre 1958 mais les ordinateurs lutilisant ne sont apparus quen 1963. Lun de leurs premiers usages était dans les systèmes embarqués, notamment par la NASA dans lordinateur de guidage dApollo et par les militaires dans le missile balistique intercontinental LGM-30. Le circuit intégré autorisa le développement dordinateurs plus compacts. On les appela les mini-ordinateurs.

À noter que Philips (marque hollandaise bien connue de produits grand public) lança une série dordinateurs du type « 360 » pour concurrencer IBM, ils étaient plus rapides et largement aussi fiables (cest-à-dire assez peu...) mais comme ils utilisaient un système dexploitation spécifique, ils disparurent rapidement du marché. Siemens, Digital Equipment, HP, tentèrent également de supplanter IBM sur ce créneau du « 360 » mais sans grand succès. Seuls Control-Data et Cray purent rivaliser avec les hauts de gammes dIBM dans les années 1970-80.

« Mini-ordinateurs », à partir de 1973

Le mini-ordinateur a été une innovation des années 1970 qui devint significative vers la fin de celles-ci. Il apporta la puissance de lordinateur à des structures décentralisées, non seulement grâce à un encombrement plus commode, mais également en élargissant le nombre de constructeurs dordinateurs.

  • Hewlett-Packard lance en 1973 le HP 3000, mini-ordinateur fonctionnant en multi-tâches temps réel.
  • DEC devint dans les années 1980 le deuxième fabricant dordinateurs derrière IBM (avec un chiffre daffaires représentant le cinquième de celui-ci) grâce à ses ordinateurs populaires PDP (surtout le PDP-11, première machine de DEC à utiliser des mémoires de 16 bits et non de 12, et machine sur laquelle et pour laquelle fut développé le langage C) et VAX, qui apportera le confort du système VMS.

Lintégration de circuits intégrés à grande échelle conduisit au développement de processeurs très petits, comme celui qui analyse les données de vol dans les avions F14A Tomcat de lUS Navy. On ignorait alors encore que lexplosion à distance dune charge nucléaire les rendrait instantanément inopérants (effet EMP).

En 1973, le TV Typewriter de Don Lancaster permit le premier dafficher des informations alphanumériques sur une télévision ordinaire. Il était composé de 120 $ de composants électroniques, incluait deux cartes mémoires et pouvait générer et stocker 512 caractères. Une cassette optionnelle fournissait une capacité de 100 pages de textes supplémentaires. Clive Sinclair se basera plus tard sur cette approche pour construire son Sinclair ZX80.

Dans les années 1970, IBM a sorti une série de mini-ordinateurs.
La série 3 : 3/6, 3/8, 3/10, 3/12, 3/15.
Ensuite, dans les années 1980, la série 30 : 32, 34, 36, 38.
Une troisième série a succédé à la série 30 : les AS/400.

Quatrième génération (1971 à la fin des années 1980)

Une définition non universellement acceptée associe le terme de quatrième génération à linvention du microprocesseur par Marcian Hoff. En pratique et à la différence des autres changements de génération, celui-ci constitua plus une évolution (presque passée inaperçue) quune révolution : les circuits sétaient miniaturisés de plus en plus depuis linvention du circuit intégré, ils continuaient simplement à le faire comme par le passé.

Cest pour cette raison que certains considèrent que les générations sont devenues des questions de type de logiciel :

  • première génération : codage machine direct en binaire ;
  • deuxième génération : langage assembleur ;
  • troisième génération : langages évolués (Fortran, COBOL, Simula, APL, etc.) ;
  • quatrième génération : langages évolués de deuxième génération comme Pascal et C++, dit « structurés », apparition des langages « Objets » et langages dinterrogation de très haut niveau comme SQL ;
  • un projet de cinquième génération japonaise avait été lancé par le MITI au tout début des années 1980. Il devait être articulé sur les moteurs dinférence et le langage Prolog, mais en dépit de budgets importants le projet naboutit pas.

Les microprocesseurs

Le 15 novembre 1971, Intel dévoile le premier microprocesseur commercial, le 4004. Il a été développé pour Busicom, un constructeur japonais. Un microprocesseur regroupe la plupart des composants de calcul (horloge et mémoire mises à part pour des raisons techniques) sur un seul circuit. Couplé à un autre produit, la puce mémoire, le microprocesseur permet une diminution nouvelle des coûts. Le 4004 ne réalisait que 60 000 opérations par seconde, mais la puissance de ses successeurs répondit à la loi de Moore.

Les super-calculateurs

Les superordinateurs intégrèrent aussi des microprocesseurs.

  • En 1976, le Cray-1 fut développé par Seymour Cray, qui avait quitté Control Data en 1972 pour créer sa propre compagnie. Cétait lun des premiers ordinateurs à mettre en pratique le traitement vectoriel, qui appliquait la même instruction à une série consécutive dopérandes (évitant ainsi des coûts de décodage répétés). Le Cray-1 pouvait calculer 150 millions dopérations à virgule flottante par seconde. 85 exemplaires furent vendus à cinq millions de dollars lunité.
Parmi ses clients en France : lÉcole polytechnique (simulations et calculs numériques) ; Michelin (étude de résistance des pneumatiques par la méthode des éléments finis) ; Peugeot (simulations intensives de déformations de lhabitacle dune voiture en cas de choc frontal ou latéral).

Aujourd'hui, en ( 2010 ) la hiérarchie s'est modifiée[11] avec l'arrivée des constructeurs asiatiques et surtout chinois :

N°1 : le TIANHE-1A du Centre national de calcul intensif de Tianjin ( chine ) avec une puissance de 2,57 petaflops/s ( soit un million de milliards d'opérations par seconde !)
N°2 : le CRAY JAGUAR du département américain de l'Energie ( puissance de 1,75 petaflops/s )
N°3 : le NEBULAE, installé au National Supercomputing Centre de Shenzen ( Chine ) avec une puissance de 1,27 petaflops/s
N°4 : le TSUBAME, de l'Institut Technologique de Tokio ( Japon ) avec une puissance de 1,19 petaflops/s)

A noter que le TERA 100 ( construit par le fabricant français BULL pour le CEA (commissariat à l'énérgie atomique ) est classé en première position en Europe et sixième en position mondiale ( puissance de 1,05 petaflops/s)

Les contrôleurs de communication

Eux aussi bénéficièrent de lusage des microprocesseurs et lon peut même dire que la généralisation des réseaux informatiques na été possible que par linvention des microprocesseurs. Les contrôleurs 3745 (IBM) utilisaient intensivement cette technologie. Dans le même temps, aux États-Unis, la compagnie AT&T se rendit compte quavec tous ses standards téléphoniques interconnectés, elle se trouvait sans lavoir cherché disposer du plus grand réseau dordinateurs des États-Unis (un standard téléphonique, depuis linvention des microprocesseurs, tient beaucoup plus de lordinateur que du dispositif câblé, et nombre dentre eux se commandent en UNIX).

Lordinateur personnel

En janvier 1973 est présenté le premier micro-ordinateur, le Micral conçu par François Gernelle de la société R2E dirigée par André Truong Trong Thi. Basé sur le premier microprocesseur 8 bits d'Intel, le i8008, ses performances en font le plus petit ordinateur moderne de l'époque (500 KHz, mémoire RAM de 8 ko en version de base), correspondant à son prix : 8 500 Francs, soit le prix d'un bon portable d'aujourd'hui. La machine a été développée pour un laboratoire d'agronomie qui ne pouvait s'offrir un mini-ordinateur DEC PDP8. Elle est rapidement mise en production industrielle, annoncée dans la presse professionnelle française et américaine, présentée au Sicob et vendue pour équiper des installations chimiques ou des péages d'autoroute. De nouvelles versions seront développées ensuite, au total une vingtaine de machines multi-utilisateurs, parfois multiprocesseurs, sous systèmes d'exploitation temps réel Prologue et CP/M. Le succès nécessitant de nouveaux capitaux, R2E passe sous le contrôle de Bull à partir de 1978. En 1982, la conversion de Bull à la compatibilité IBM provoque le départ de l'ancienne équipe R2E, qui fonde de nouvelles entreprises de micro-informatique.

Au Sicob 1973 est également apparu un micro-ordinateur allemand. Le DIEHL Alphatronic utilise lui aussi le microprocesseur Intel 8008.
. Il comprend une unité centrale équipée dun Intel 8008 (4 ko extensible à 16 ko), dun lecteur enregistreur de mini-cassette magnétique et dune imprimante à boule IBM. Il ne comportait pas décran. La programmation en mini-basic était visualisée sur une mini imprimante (bande papier en rouleau). Prix de vente de lensemble 4 573 €.

Présenté en avril 1974, le processeur Intel 8080 va conduire à la première vague dordinateurs personnels, à la fin des années 1970. La plupart dentre eux utilisait le bus S-100 et le système dexploitation CP/M-80 de Digital Research. CP/M-80 était le premier système dexploitation à être utilisé par plusieurs fabricants dordinateurs différents, et de nombreux logiciels furent développés pour lui. Le système MS-DOS de Microsoft, acheté par Microsoft à Tim Paterson de la société Seattle Computer Products (quil avait appelé QDOS pour Quick and Dirty Operating System) sen inspira fortement (en inversant lordre de certains opérandes pour ne pas encourir de procès, ce qui provoqua quelques catastrophes chez ceux qui utilisaient les deux systèmes).

En janvier 1975, sort lAltair 8800. Développé par des amateurs, frustrés par la faible puissance et le peu de flexibilité des quelques ordinateurs en kit existant sur le marché à lépoque, ce fut certainement le premier ordinateur personnel en kit produit en masse. Il était le premier ordinateur à utiliser un processeur Intel 8080. LAltair inaugura le bus S-100. Ce fut un énorme succès et 10 000 unités furent vendues. Cest lAltair qui inspira le développement de logiciels à Bill Gates et Paul Allen, qui développèrent un interpréteur BASIC pour cette machine.
En 1975 sortira aussi lIBM 5100, machine totalement intégrée avec son clavier et son écran, qui se contente dune prise de courant pour fonctionner.

Toujours en 1975, le fabricant de terminaux programmables TRW se rend compte que son terminal Datapoint 2200 à disquettes (de huit pouces) est un ordinateur si on léquipe dun langage évolué (BASIC) et dun système dexploitation (CP/M), et commence à le commercialiser comme tel, en inventant le premier réseau local pour micros : ARCnet. Ce système, commercialisé en France par Matra, ne sera cependant jamais proposé au grand public.

De nombreux amateurs tentent à cette époque de créer leurs propres systèmes. Ces passionnés se rencontrent lors de réunions au Homebrew Computer Club, ils montrent leurs réalisations, comparent leurs systèmes et échangent des plans ou des logiciels. Certains de ces amateurs sintéressent à construire quelque chose de prêt à lemploi que Monsieur tout le monde puisse soffrir.

En 1976, Steve Wozniak, qui fréquentait régulièrement le Homebrew Computer Club, conçoit lApple I, doté dun processeur MOS Technology 6502 à 1 MHz. Il vend avec Steve Jobs environ 200 machines à 666 $ lunité. Il est doté dun microprocesseur et dun clavier.

En 1977, sort LApple II. Malgré son prix élevé (environ 1 000 $), il prend rapidement lavantage sur les deux autres machines lancées la même année, le TRS-80 et le Commodore PET, pour devenir le symbole du phénomène de lordinateur personnel. Dune très grande qualité, lApple II a de gros avantages techniques sur ses concurrents : il dispose d'une architecture ouverte, d'un lecteur de disquettes, et utilise des graphismes en couleur. Grâce à lApple II, Apple domine lindustrie de lordinateur personnel entre 1977 et 1983. Plus de deux millions dApple II sont vendus .

En 1978, devant le succès de lApple II, IBM décide de renouer avec le marché de lordinateur personnel (le marché avait trouvé le 5100 trop lent, le 5110 trop lourd physiquement, et le System 23 Datamastercréé pour faire pendant au TRW-2200navait pas bénéficié dun support marketing suffisant à lépoque). Frank Cary confie une équipe, un budget et donne carte blanche à Don Estridge. En août 1981 sort lIBM PC (Personnal Computer). Il utilise un processeur Intel 8088 tournant à 4,77 MHz et peut faire tourner trois systèmes dexploitation différents : PC-DOS, CP/M-86 et PC/IX. LUCSD p-System sera également utilisable, mais non supporté par IBM. Microsoft sest réservé, contre réduction de la facture à IBM, le droit de commercialiser sa propre version du PC-DOS pour dautres ordinateurs de marque non-IBM, et qui sera nommée le MS-DOS. Cela se révèlera une erreur monumentale pour IBM.

Lordinateur le plus vendu de tous les temps[réfnécessaire] est sans doute le Commodore 64, dévoilé par Commodore International en septembre 1982. Il utilise un processeur MOS Technology 6510 à 1 MHz et coûte 595 $. Il avait un écran 16 couleurs et possédait une carte son. Entre 17 et 25 millions dunités sont vendues jusquen 1993.

Après le 64, Commodore sortit lAmiga. Ses possibilités exceptionnelles en matière de graphisme et la rapidité de son processeur permettaient de programmer des jeux, en particulier en utilisant le langage Amos.

À cette époque apparurent les premiers « clones » compatibles, comme le Franklin 1000 compatible avec lApple II ou le premier PC compatible lancé par Compaq en mars 1983. Cette concurrence sur le marché des ordinateurs personnels permit de faire baisser les prix et de rendre ces machines populaires.

En 1982, Intel lança le 80286, et IBM le PC/AT basé dessus. Cest à cette époque que le PC devint larchitecture dominante sur le marché des ordinateurs personnels. Seul le Macintosh dApple continua à défier lIBM PC et ses clones, qui devinrent rapidement le standard.

En 1983, Apple lance le Lisa, le premier ordinateur personnel doté dune interface graphique. Le Lisa utilisait un processeur Motorola 68000, un disque dur de 5 Mo, deux lecteurs de disquette et 1 Mo de RAM. Son interface graphique sinspirait de celle du Xerox Star. Malgré son caractère révolutionnaire pour lépoque, ce fut un échec commercial, principalement à cause de son prix élevé (10 000 $) et de sa relative lenteur.

Ordinateurs avec écrans plats utilisés en 2006 à luniversité de Warwick

Le 22 janvier 1984, Apple lance le Macintosh, le premier micro-ordinateur à succès utilisant une souris et une interface graphique. Il reprenait plusieurs caractéristiques du Lisa, comme le processeur Motorola 68000, mais pour un prix bien plus abordable : 2 500 $, grâce à labandon de quelques fonctionnalités du Lisa comme le multitâche. Il était fourni avec plusieurs applications utilisant la souris, comme MacPaint et MacWrite.

Malgré ses nombreuses innovations dans le domaine, Apple perdit peu à peu des parts de marché pour se stabiliser à environ 4 % des ventes dordinateurs dans les années 2000. Et ce, malgré le succès de liMac, premier ordinateur conçu par des designers, qui sécoula à plus de six millions dexemplaires, en en faisant le modèle dordinateur personnel le plus vendu au monde. Parallèlement, le PC Compatible simposa de plus en plus au grand public avec des assembleurs tel que Hewlett-Packard, Compaq, Dell ou NEC.

Années 1990

Les années 1990 ont été marquées par la correction du problème de l'an 2000 (ou bogue de l'an 2000, appelé Y2K dans le monde anglo-saxon), qui affectait presque tous les ordinateurs. En effet, la date système ne gérait que deux caractères pour l'année (99 pour 1999), de sorte qu'au passage à l'an 2000, la date système allait revenir à 00 et être interprétée comme 1900. Ce défaut de conception systémique se manifestait également dans la plupart des logiciels, dont les sous-programmes de gestion de date reprenaient la date système le plus souvent sans modification du format[12].

La résolution de ce problème s'est faite soit par la conversion des logiciels, sans changement du matériel, soit aussi par le remplacement complet du matériel et du logiciel, en profitant des progrès techniques de diminution de taille des ordinateurs rendus possibles par la miniaturisation des composants (downsizing). Cela a permis de remplacer les logiciels spécifiques affectés par le problème, par des logiciels ou des progiciels le plus souvent sous UNIX avec des ordinateurs de taille réduite.

Cette décennie a aussi été marquée bien sûr par le développement de l'Internet et l'apparition de la Toile. La convergence de l'informatique, de l'Internet, et des télécommunications a donné lieu à l'apparition d'une nouvelle expression, les « technologies de l'information et de la communication » (TIC), que la DGLFLF préfère appeler techniques de l'information et de la communication[13], afin d'éviter l'usage abusif du mot technologie[14]. Avec Internet s'ouvre une nouvelle page de l'histoire de l'informatique.

Notes

  1. Jean Marguin, p. 48 (1994) Citant René Taton (1963)
  2. Robert Ligonnière, pp.201-204 (1987)
  3. Robert Ligonnière, p.204 (1987)
  4. Robert Ligonnière, p.60 (1987)
  5. Robert Ligonnière, pp.91-94, (1987)
  6. (en) Logo de CTR IBM history exhibits
  7. Charles & Ray Eames, p.23, 1973
  8. [1]
  9. P. Mounier-Kuhn, LInformatique en France, de la seconde guerre mondiale au Plan Calcul. Lémergence dune science, Paris, PUPS, 2010, ch. 3 et 4.
  10. [2]
  11. http://www.top500.org/lists/2010/11/press-release
  12. [PDF] Le bogue de l'an 2000, la lettre d'ADELI no36, juillet 1999
  13. Voir le vocabulaire des techniques de l'information et de la communication sur le site de la DGLFLF
  14. Consulter le résumé introductif de l'article technologie pour saisir la distinction entre technologie et technique

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes

Bibliographie

  • Philippe Breton, Une histoire de linformatique. Paris, Éditions du Seuil (coll. Points Sciences), 1990
  • Hugues Bersini, Marie-Paule Spinette et Robert Spinette, Les Fondements de l'informatique , Vuibert, 2008.
  • Paul Chion, Histoire de l'informatique, Éd. PEMF
  • Jean-Yvon Birrien, Histoire de l'informatique, collection Que sais-je, no2510, Éd. PUF
  • René Moreau, Ainsi naquit linformatique, Dunod, 1984.
  • Pierre Mounier-Kuhn, L'informatique en France, de la seconde guerre mondiale au Plan Calcul. L'émergence d'une science, Paris, PUPS, 2010.
  • Jean Marguin, Histoire des instruments et machines à calculer, trois siècles de mécanique pensante 1642-1942, Hermann, 1994 (ISBN 978-2-7056-6166-3) 
  • (en) Charles & Ray Eames, A Computer Perspective, Cambridge, Massachusetts, Harvard University press, 1973 
  • Robert Ligonnière, Préhistoire et histoire des ordinateurs, Paris, Robert Laffont, 1987 (ISBN 2-221-05261-7) 
  • Alain Lefebvre & Laurent Poulain, "Cow-boys contre chemins de fer ou que savez-vous vraiment de l'histoire de l'informatique", 2010, ISBN 978-2-9527852-4-2.

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Histoire des ordinateurs de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Histoire des techniques — Noria d après un manuscrit d Al Djazari, vers 1205 L’histoire des techniques est l’étude de toutes les réalisations techniques de l’Homme, de leur contexte d’apparition comme de leur impact sur la société. La lecture la plus courante de cette… …   Wikipédia en Français

  • Histoire des jeux video — Histoire du jeu vidéo L histoire des… jeux vidéo Histoire des jeux vidéo Krach du jeu vidéo de 1983 Consoles de jeux Première génération …   Wikipédia en Français

  • Histoire des jeux vidéo — Histoire du jeu vidéo L histoire des… jeux vidéo Histoire des jeux vidéo Krach du jeu vidéo de 1983 Consoles de jeux Première génération …   Wikipédia en Français

  • Histoire Des Systèmes De Paiement En France — Le développement des systèmes de paiement en France a commencé à la fin des années 60, avec la mise en place de systèmes automatisés, qui ont progressivement remplacé les chambres de compensation et autres systèmes d échange papier. De 1969, mise …   Wikipédia en Français

  • Histoire des systemes de paiement en France — Histoire des systèmes de paiement en France Le développement des systèmes de paiement en France a commencé à la fin des années 60, avec la mise en place de systèmes automatisés, qui ont progressivement remplacé les chambres de compensation et… …   Wikipédia en Français

  • Histoire des systèmes de paiement en france — Le développement des systèmes de paiement en France a commencé à la fin des années 60, avec la mise en place de systèmes automatisés, qui ont progressivement remplacé les chambres de compensation et autres systèmes d échange papier. De 1969, mise …   Wikipédia en Français

  • Histoire Des Techniques — Article de la série Histoire des sciences Chronologie Chronologie des sciences Chronologie de l astronomie …   Wikipédia en Français

  • Histoire Des Représentations Érotiques — Lampe à pétrole romaine dépeignant la position de la levrette. Les représentations érotiques sont les peintures, sculptures, photographies, œuvres musicales et littéraires qui montrent ou décrivent des scènes à caractère sexuel. On …   Wikipédia en Français

  • Histoire des representations erotiques — Histoire des représentations érotiques Lampe à pétrole romaine dépeignant la position de la levrette. Les représentations érotiques sont les peintures, sculptures, photographies, œuvres musicales et littéraires qui montrent ou décrivent des… …   Wikipédia en Français

  • Histoire Des Consoles De Jeux Vidéo — L histoire des… jeux vidéo Histoire des jeux vidéo Krach du jeu vidéo de 1983 Consoles de jeux Premièr …   Wikipédia en Français

Share the article and excerpts

Direct link
https://fr-academic.com/dic.nsf/frwiki/1965295 Do a right-click on the link above
and select “Copy Link”