- Système d'électrification ferroviaire
-
Un système d'électrification ferroviaire est l'ensemble des moyens mis en œuvre pour alimenter en énergie électrique les trains (locomotive électrique ou rame automotrice électrique). Les trains sont alimentés en courant alternatif haute tension ou en courant continu basse tension. L'alimentation passe par un troisième rail ou une caténaire et le retour de courant se fait par les rails de la voie ou un quatrième rail dédié.
Sommaire
Histoire
Pour propulser une locomotive électrique, il faut un système propulseur électrique, un système de variation de vitesse et un système de production et de transport de l'énergie électrique.
Le seul courant facilement productible et transportable est le courant alternatif polyphasé : hier, le diphasé ou quadriphasé, aujourd'hui, le triphasé. Un moteur électrique bien adapté à la traction est le moteur à courant continu de type série car il possède une très grande plage de vitesse variable et un très fort couple au démarrage. En feuilletant le stator d'un moteur à courant continu et en prenant un très grand soin au niveau des balais (phénomènes de commutation), il est possible d'alimenter un moteur à courant continu avec du courant alternatif. Plus la fréquence de ce courant est élevée, plus les pertes fer (hystérésis et courants de Foucault) sont importantes, d'où l'idée d'utiliser une fréquence faible : le 16 Hz 2/3 (utilisé en Allemagne et en Suisse, par exemple).
Aucun système n'étant parfait, de nombreuses solutions ont été essayées, en tensions, en fréquences, en types de moteur, en systèmes de variation de vitesse, en système de transmission de la puissance aux roues, en systèmes de captage de courant ; ceci explique le très grand nombre de fabricants de matériel ferroviaire dans la première moitié du XXe siècle, et la très grande variété d'écoles d'ingénieurs formant les spécialistes capables de comprendre et de faire évoluer cette multitude de systèmes.
L'ensemble de ces problèmes a été résolu aujourd'hui avec les semi-conducteurs de puissance qui permettent de « jongler » avec tensions et fréquences. Aujourd'hui, les moteurs électriques de traction sont des moteurs alternatifs synchrones à fréquence variable, alimentés par des convertisseurs statiques. La tension économique à l'utilisation est donc le 25 000 V à fréquence industrielle en dehors des sites urbains et suburbains où les tunnels et le réseau de transport d'énergie s'accommodent mal du monophasé à fréquence industrielle, sans compter l'implantation de sections de séparation de phase ni la hauteur des quais limitée à 1 m en pratique. La chaine de traction moderne à moteurs asynchrones autorise les deux fréquences en usage, en Europe, ainsi que les deux types de courant.
La traction électrique présente un intérêt pour les lignes à fort trafic ou au profil difficile. En ville, elle permet aux trains de circuler en tunnel (métro) et évite les nuisances du préchauffage des moteurs diesel[1].
En France, l'électrification d'une ligne existante coûte environ un million d'euros par kilomètre en 2010[1] (cela peut être beaucoup élevé quand il faut adapter des tunnels ou des ponts au gabarit électrique).
Courants
Article détaillé : Liste des courants utilisés en traction ferroviaire électrique.Les courants utilisés en Europe ont fait l'objet d'une standardisation présentée dans le tableau ci dessous[2] ,[3].
Les valeur varient en fonction du nombre de trains sur la ligne et de la distance à la sous-station.
Système d'électrification Plus basse tension non-permanente Plus basse tension permanente Tension nominale Plus haute tension permanente Plus haute tension non-permanente 600 V DC 400 V 400 V 600 V 720 V 800 V 750 V DC 500 V 500 V 750 V 900 V 1 kV 1 500 V DC 1 000 V 1 000 V 1 500 V 1 800 V 1 950 V 3 kV DC 2 kV 2 kV 3 kV 3 kV 3 kV 15kV AC, 16 2/3Hz 11 kV 12 kV 15 kV 17,25 kV 18 kV 25 kV AC, 50Hz 17,5 kV 19 kV 25 kV 27,5 kV 29 kV Courant continu
Les premiers systèmes électriques utilisaient des tensions relativement basses en courant continu. Les moteurs électriques étaient alimentés en direct sur le réseau et contrôlés par une combinaison de résistances et de relais qui connectaient les moteurs en parallèle ou en série.
Les tensions courantes sont le 600 V et le 750 V pour les tramways, trolleys et métros, et le 1500 V et le 3000 V pour les grands chemins de fer. Autrefois, des convertisseurs rotatifs (commutatrices) ou des redresseurs à vapeur de mercure étaient utilisés pour convertir le courant alternatif fourni par le réseau public en courant continu à la tension voulue. De nos jours, on utilise généralement des redresseurs à semi-conducteurs.
Le système à courant continu est très simple, mais nécessite des conducteurs de forte section et impose de courtes distances entre les sous-stations qui alimentent le réseau. En outre, il y a des pertes notables du fait de la résistance des conducteurs.
Les équipements auxiliaires, tels que souffleries et compresseurs, sont aussi animés par des moteurs branchés directement sur le réseau électrique. En conséquence, ces moteurs sont souvent inhabituellement volumineux.
Le courant continu 1500 V est utilisé aux Pays-Bas, au Japon, dans certaines parties de l'Australie et partiellement en France (réseaux Sud-Est et Sud-Ouest). Aux États-Unis, le courant continu 1500 V est utilisé dans la région de Chicago par le Metra (anciennement Illinois Central Railroad) et la ligne de tram interurbain South Shore and South Bend.
Au Royaume-Uni, le courant continu 1500 V fut utilisé en 1954 pour l'électrification de l'itinéraire de la trans-Pennine (maintenant fermé) par le tunnel de Woodhead. Le système utilisait le freinage par régénération, permettant le transfert d'énergie entre les trains montant et descendant les rampes d'approche du tunnel. Le seul réseau utilisant actuellement ce type de courant au Royaume-Uni est celui du Métro Tyne & Wear.
Le courant continu 3000 V est utilisé en Belgique, en Italie, en Pologne, dans le nord de la République tchèque, en Slovaquie, dans l'ancienne Yougoslavie et dans les pays de l'ex-Union soviétique. Le courant continu 3000 V fut aussi utilisé autrefois par le Delaware, Lackawanna and Western Railroad (actuellement New Jersey Transit avant qu'il ne soit converti au courant alternatif 25 kV). À noter que le Luxembourg est équipé comme ses voisins, en 3 kV au nord et en 25 kV au sud, afin d'éviter les escales avant l'avènement des engins bi-courants fiables et sans coût exagéré.
Les tensions indiquées (telles que 1500 V) sont des valeurs nominales susceptibles de fluctuer dans un sens ou dans l'autre, par exemple entre 1300 V et 1800 V selon divers facteurs :
- nombre de trains captant le courant sur la ligne,
- distance depuis la sous-station.
Les tensions courantes sont souvent des multiples simples l'une de l'autre :
Ceci a permis de nombreuses combinaisons dans les chaînes de traction des anciennes locomotives à commande électromécanique. Il est possible de faire fonctionner en sous tension une locomotive conçue pour une tension plus élevée, avec la tension caténaire plus faible, entre 2 réseaux ferroviaires utilisant le courant continu : exemple, entre la SNCF et les FS, à Modane et Vintimille. La machine italienne conçue pour le 3000 V continu évolue sous tension catenaire 1500 V continu pour manoeuvrer (mais pas pour accélérer).
Les motrices modernes nécessitent une modification du logiciel de gestion, afin d'autoriser la fermeture du disjoncteur en sous alimentation (cas d'une machine tritension 25 kV-50 Hz, 15 kV-16⅔ Hz et 3000 V continu). Dans le mode 3000 V continu, la chaine de traction travaille, ainsi à demi-tension sous 1500 V continu.
Le chemin de fer de la Mure (Isère, France) fut la premiere ligne électrifiée en courant continu haute tension, entre 1903 et 1913 (tension 2700 V continu en charge et 3000 V à vide).
Courant alternatif à basse fréquence
Les moteurs électriques courants, à commutation, peuvent aussi être alimentés en courant alternatif (moteur universel), parce que l'inversion du sens du courant à la fois dans le stator et le rotor ne change pas la direction du couple. Toutefois, l'inductance d'un enroulement ne permet pas de réaliser de gros moteurs aux fréquences standard des réseaux de distribution. Un certain nombre de pays européens, dont l'Allemagne, l'Autriche, la Suisse, la Norvège et la Suède, ont standardisé le courant alternatif monophasé à 15 kV 16,2/3 Hz (un tiers de la fréquence standard) (auparavant des tensions de 6 kV et 7,5 kV avaient été employées). Aux États-Unis (avec leur système de distribution électrique à 60 Hz), la fréquence de 25 Hz (une ancienne fréquence standard, désormais obsolète de distribution) est utilisée sous 11 kV entre Washington et New York. Une section équipée en 12,5 kV 25 Hz entre New York et New Haven (Connecticut) fut convertie en 60 Hz dans le dernier tiers du XXe siècle.
Les moteurs sont alimentés par l'intermédiaire d'un transformateur commutateur qui permet de modifier la tension, aussi les résistances ne sont pas nécessaires. Les équipements auxiliaires sont pilotés par des moteurs à basse tension à commutation, alimentés par un enroulement séparé du transformateur principal, et sont de taille raisonnablement petite.
Les fréquences inhabituelles supposent que l'électricité soit convertie à partir du courant fourni par réseau public par des moteurs-générateurs ou des inverseurs statiques dans les sous-stations d'alimentation du réseau, ou produite par des postes électriques complètement séparés.
Courant alternatif à fréquence standard
Les premières tentatives d'utiliser du courant alternatif monophasé à la fréquence standard de 50 Hz ont eu lieu en Hongrie dans les années 1930, puis en Allemagne. Toutefois, ce n'est que dans les années 1950 que l'usage de ce courant dit « à fréquence industrielle » a débuté (autour d'Annecy, sous l'impulsion de Louis Armand), puis s'est vraiment répandu, notamment avec l'électrification de la transversale Nord-Est (Valenciennes - Thionville) en France.
De nos jours, certaines locomotives dans ce système utilisent un transformateur et un redresseur qui fournissent un courant continu à basse tension aux moteurs. La vitesse est contrôlée par commutation des enroulements du transformateur. Des locomotives plus sophistiquées utilisent des circuits à thyristors ou à transistors IGBT pour produire un courant alternatif vibré ou même à fréquence variable qui ensuite alimente directement les moteurs de traction.
Ce système est économique. Pour éviter des déséquilibres de phase dans les systèmes d'alimentation extérieurs, on a fait appel, dans les débuts, à des transformateurs triphasés/monophasés ou triphasés/diphasés. Ces deux types de transformateur réduisent les déséquilibres entre phases sans les supprimer. Ils permettent par contre d'orienter convenablement le vecteur de phase résultant au secondaire chaque fois que nécessaire et en particulier dans le cas où l'on veut mettre en parallèle plusieurs sous-stations qui ne présentent pas le même indice horaire au primaire (ex : 0-4-8 pour le 225 kV et 3-7-11 pour du 63 kV). Cette solution a été appliquée sur 3 sous-stations des banlieues 25 kV Ouest, Est et Nord de Paris vers les années 1966/1968, dans le but d'alimenter ces trois réseaux en parallèle. Aujourd'hui, les locomotives grâce à l'IGBT avec moteurs de traction à fréquence variable, ont un courant d'appel faible au démarrage. Cela permet de prendre l'alimentation des sous stations directement entre deux phases. Cela engendre des déséquilibres sur la troisième phase mais est considéré comme acceptable car évitant l'acquisition de ces transformateurs spéciaux très coûteux. Un système de courants trop déséquilibrés peut d'une part engendrer des interférences électromagnétiques notables et d'autre part poser des problèmes au niveau même de la production de courant (l'alternateur).
Le système alternatif monophasé 25 kV 50 Hz est utilisé en France, en Grande-Bretagne, en Finlande, au Danemark sur certaines lignes en Belgique notamment les LGV, dans les pays de l'ex Union soviétique, l'ex-Yougoslavie, en Inde, au Japon et dans certaines parties de l'Australie (toutes les électrifications du Queensland et d'Australie occidentale), tandis qu'aux États-Unis on utilise communément des courants de 12,5 et 25 kV à 60 Hz. Le 25 kV 50Hz est le courant de référence pour toutes les lignes à grande vitesse et les longues distances, même lorsque le reste du réseau est électrifié avec un autre type de courant. C'est la cas notamment en Espagne, en Italie, aux Pays-Bas, en Afrique du Sud, à Taïwan, en Chine, etc.
2x25 kV
C'est une formule utilisée pour minimiser le nombre de sous-stations pour alimenter la ligne. La sous-station alimente la caténaire et un feeder qui sont en opposition de phase et à un potentiel de 25 kV par rapport au rail, soit une différence de potentiel de 50 kV entre la caténaire et le feeder. A intervalle régulier, un auto-transformateur connecte le rail, le feeder et la caténaire pour alimenter le train en 25 kV.
Les LGV françaises et la plupart des axes nouvellement électrifiés en France le sont sur ce principe.
Alimentation de la caténaire ou du troisième rail
La fourniture d'électricité à un réseau ferroviaire est une problématique à part entière de l'électrification ferroviaire.
Au niveau de la source d'électricité, le gestionnaire du réseau peut choisir de produire lui même l'électricité, ce qui était courant au début du XXe siècle pour le métro de Paris par exemple. C'est devenu beaucoup moins intéressant avec les progrès accomplis en matière de conversion du courant et avec le développement du réseau électrique. La SNCF a été pratiquement autonome jusque dans les années 1960 avec ses propres usines hydroélectriques héritées de la Compagnie du chemin de fer de Paris à Orléans (PO) (barrages sur la Creuse, la Dordogne, la Rhue et quelques autres) et de la Compagnie du Midi (nombreux barrages pyrénéens).
Le choix d'un courant alternatif à une fréquence différente de celle du réseau de distribution peut contraindre l'opérateur à avoir son propre réseau de transport de l'électricité (CFF en Suisse par exemple).
Des sous-stations d'alimentation sont nécessaires pour convertir le courant électrique de sa tension de transport à sa tension d'utilisation. La tension utilisée conditionne la distance entre deux sous-stations ; plus la tension est élevée, plus elles seront éloignées les unes des autres.
Les sous-stations sont des installations électriques qui traitent des puissances électriques très élevées et doivent être raccordées au réseau de distribution haute tension.
En France, les sous-stations 1500 V atteignent 15 MW ; les sous-station 25 kV atteignent 100 MVA.
Réseau ferré de France (RFF), alimente ses caténaires 25 kV à partir des réseaux 63, 90 et 225 kV de Réseau de transport d'électricité (RTE). Les lignes récemment électrifiés sont branchées directement sur le 225 kV.
La tension vue par le train peut beaucoup varier autour de la tension nominale. Il peut y avoir une baisse de tension à cause d'une demande de courant trop forte pour les capacités de la sous-station ou au contraire une tension plus élevée que la tension nominale s'il y a peu de trains et au voisinage de la sous-station (jusqu’à 27 kV en alimentation 25 kV).
La puissance de l'alimentation est critique. Les problèmes de sous-alimentation peuvent avoir des conséquence graves. Il empêchent d'augmenter le trafic de la ligne, ralentissent les trains qui doivent modérer leur accélération. Dans des cas extrêmes, une ou plusieurs sous-stations peuvent disjoncter et paralyser la circulation. En Île-de-France, ce type de problème est apparu plusieurs fois (pannes sur le réseau Saint-Lazare, sous-alimentation de la grande ceinture entre Massy - Palaiseau et Versailles-Chantiers, pannes sur le RER A avec l'arrivée des MI 2N beaucoup plus puissants que les trains qu'ils ont remplacés).
Pour prévenir cette situation, il faut avoir une politique d'amélioration continue de l'alimentation de la ligne en augmentant la puissance que peuvent fournir les sous-stations existantes ou en créant de nouvelles sous-stations. En Suisse, l'alimentation permet de voir des unités multiples (UM) de Re 460 (2x6 MW) en tête de train sur les lignes de montagne alors qu'en France la SNCF n'utilise pas d'unité multiples sur ses locomotives les plus puissantes (BB 26000, BB 36000) sauf dans des cas très particuliers.
Pour éviter que la sous-station disjoncte, l'opérateur peut brider la puissance disponible des trains. Ainsi, la puissance disponible pour une rame de TGV en unité multiple n'est en général pas la somme de la puissance des deux rames et, même en unité simple, le train n'utilise pas sa puissance au maximum hors des lignes à grande vitesse. Cette problématique dégrade l'efficacité des TGV Sud-Est sur les lignes classiques alimentées en 25 kV alors que paradoxalement ces rames sont conçues pour circuler sous cette tension à 270/300 km/h.
Captage du courant
Article détaillé : Captage du courant.Le captage du courant se fait aujourd'hui principalement de deux façons :
- par fil de contact aérien, simple ou supporté par une caténaire ou un profil aérien de contact;
- par rail conducteur (troisième rail).
Que l'alimentation soit en l'air ou au sol son principe reste le même: un frotteur vient en contact avec un rail ou un fil pour capter le courant. La liaison entre le frotteur et l'alimentation permet un débattement vertical pour absorber les irrégularités de la ligne.
Le troisième rail permet d'avoir un gabarit plus réduit et demande une infrastructure moins lourde que le contact aérien. Il a par contre l’inconvénient de limiter la tension utilisable et d'être dangereux pour la sécurité des gens qui marchent à côté de la voie.
Matériel roulant
Article détaillé : locomotive électrique.Locomotives polytensions
Du fait de la diversité des systèmes d'électrification ferroviaire, qui peuvent varier même à l'intérieur d'un pays, les trains doivent souvent passer d'un système à l'autre. Un des moyens de le faire est le changement de locomotives dans les gares de contact. Ces gares sont équipées de caténaires qui peuvent basculer d'un type de courant à l'autre, de sorte qu'un train peut arriver avec une locomotive et repartir avec une autre. C'est toutefois un système qui présente des inconvénients et des surcoûts : perte de temps, nécessité de disposer de différents types de locomotives.
Un autre moyen est de disposer de locomotives polytensions capables de fonctionner sous des courants de différents types. En Europe, on peut trouver des locomotives quadritensions (Courant continu 1500 V et 3000 V, courant alternatif 15 kV 16 2/3 Hz et 25 kV 50 Hz). C'est le cas par exemple des rames TGV Thalys et PBKA. Ces locomotives peuvent passer, sans nécessiter un arrêt, d'un type de courant à un autre; toutefois elles ne sont généralement pas aussi efficaces sous tous les courants, et leur coût de construction est plus élevé. On trouve plus couramment des locomotives bicourants, par exemple en France dont le réseau ferroviaire est partagé entre le courant continu 1500 V et le courant alternatif 25 kV 50 Hz.
Les trains TGV Eurostar sont tritensions pour pouvoir circuler sur les lignes à grande vitesse (CA 25 kV 50 Hz, les anciennes lignes à 3e rail britanniques (CC 750 V) et les lignes belges (CC 3000 V). A noter que quelques rames ont été adaptées pour que les auxiliaires fonctionnent sous CC 1500 V vers le sud-est de la France.
Aux États-Unis, le New Jersey Transit utilise des locomotives polycourant ALP-44 pour ses services Midtown Direct vers New York.
Alimentation des auxiliaires
Les systèmes auxiliaires sont l'éclairage, le chauffage, la climatisation...
Si aujourd'hui il paraît naturel d'avoir des wagons éclairés, mêmes quand ils restent longtemps à l'arrêt, cela n'a pas été toujours le cas. En effet les voitures de voyageurs étaient munies d'une dynamo qui rechargeait les batteries en roulant. Cette solution n'était pas applicable pour les métros et les rames automotrices de banlieue. Dans ce cas l'éclairage des voitures se faisait en direct avec le courant d'alimentation. Dans les anciennes rames de la RATP, l'éclairage consistait en la mise en série de cinq ampoules de 150 V pour obtenir le 750 V de traction. Le nombre de lampes dans un wagon était donc obligatoirement un multiple de cinq. En cas de panne du courant de traction, un fil aérien de secours permettait de rétablir l'éclairage.
Notes et références
- Faut-il électrifier à tout prix?, p. 14 lignes d’avenir no 7, octobre 2009
- EN 50163: Railway applications. Supply voltages of traction systems (2007)
- IEC 60850: Railway applications - Supply voltages of traction systems, 3rd edition (2007)
Voir aussi
Articles connexes
Catégorie :- Électrification ferroviaire
Wikimedia Foundation. 2010.