Petit dodecicosidodecaedre ditrigonal

Petit dodecicosidodecaedre ditrigonal

Petit dodécicosidodécaèdre ditrigonal

Petit dodécicosidodécaèdre ditrigonal
Petit dodécicosidodécaèdre ditrigonal
Type Polyèdre uniforme
Éléments F=44, A=120, S=60 (χ=-16)
Faces par cotés 20{3}+12{5/2}+12{10}
Configuration de sommet 3.10.5/3.10
Symbole de Wythoff 5/33 | 5
Groupe de symétrie Ih
Références d'indexation U43, C55, W82
Petit dodécicosidodécaèdre ditrigonal
3.10.5/3.10
(Figure de sommet)
Fichier:DU43 Small ditrigonal dodecacronic hexecontahedron.png
Petit hexacontaèdre dodécacronique ditrigonal
(Polyèdre dual)


En géométrie, le petit dodécicosidodécaèdre ditrigonal est un polyèdre uniforme non-convexe, indexé sous le nom U43.

Il partage son arrangement de sommets avec le grand dodécaèdre étoilé tronqué. Il partage, de plus, ses arêtes avec le petit icosicosidodécaèdre et le petit dodécicosaèdre.

Voir aussi

Lien externe


Solides géométriques
Les polyèdres
Les solides de Platon
Tétraèdre - Cube - Octaèdre - Icosaèdre - Dodécaèdre
Les solides d'Archimède
Tétraèdre tronqué - Cube tronqué - Octaèdre tronqué - Dodécaèdre tronqué - Icosaèdre tronqué - Cuboctaèdre - Cube adouci - Icosidodécaèdre - Dodécaèdre adouci - Petit rhombicuboctaèdre - Grand rhombicuboctaèdre - Petit rhombicosidodécaèdre - Grand rhombicosidodécaèdre
Les solides de Kepler-Poinsot
Petit dodécaèdre étoilé - Grand dodécaèdre étoilé - Grand dodécaèdre - Grand icosaèdre
Les solides de Catalan
Triakioctaèdre - Tétrakihexaèdre - Triakitétraèdre - Pentakidodécaèdre - Triaki-icosaèdre - Dodécaèdre rhombique - Icositétraèdre pentagonal - Triacontaèdre rhombique - Hexacontaèdre pentagonal - Icositétraèdre trapézoïdal - Hexakioctaèdre - Hexacontaèdre trapézoïdal - Hexaki icosaèdre
Les solides de Johnson
Les solides de révolution
Boule - Cylindre de révolution - Cône de révolution - Tore - Paraboloïde de révolution
  • Portail de la géométrie Portail de la géométrie
Ce document provient de « Petit dod%C3%A9cicosidod%C3%A9ca%C3%A8dre ditrigonal ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Petit dodecicosidodecaedre ditrigonal de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Petit dodécicosidodécaèdre ditrigonal — Type Polyèdre uniforme Éléments F=44, A=120, S=60 (χ= 16) Faces par côtés 20{3}+12{5/2}+12{10} …   Wikipédia en Français

  • Grand Dodécicosidodécaèdre Ditrigonal — Type Polyèdre uniforme Éléments F=44, A=120, S=60 (χ= 16) Faces par cotés …   Wikipédia en Français

  • Grand dodecicosidodecaedre ditrigonal — Grand dodécicosidodécaèdre ditrigonal Grand dodécicosidodécaèdre ditrigonal Type Polyèdre uniforme Éléments F=44, A=120, S=60 (χ= 16) Faces par cotés …   Wikipédia en Français

  • Grand dodécicosidodécaèdre ditrigonal — Type Polyèdre uniforme Éléments F=44, A=120, S=60 (χ= 16) Faces par côtés 20{3}+12{5}+12{10/3} …   Wikipédia en Français

  • Petit dodecicosaedre — Petit dodécicosaèdre Petit dodécicosaèdre Type Polyèdre uniforme Éléments F=32, A=120, S=60 (χ= 28) Faces par cotés 20{6}+12{10} Configuration de sommet …   Wikipédia en Français

  • Petit icosicosidodecaedre — Petit icosicosidodécaèdre Petit icosicosidodécaèdre Type Polyèdre uniforme Éléments F=52, A=120, S=60 (χ= 8) Faces par cotés 20{3}+12{5/2}+20{6} …   Wikipédia en Français

  • Petit dodécicosaèdre — Type Polyèdre uniforme Éléments F=32, A=120, S=60 (χ= 28) Faces par côtés 20{6}+12{10} Configuration de sommet 6 …   Wikipédia en Français

  • Petit icosicosidodécaèdre — Type Polyèdre uniforme Éléments F=52, A=120, S=60 (χ= 8) Faces par côtés 20{3}+12{5/2}+20{6} Configuration …   Wikipédia en Français

  • Liste Des Polyèdres Uniformes — Les polyèdres uniformes et les pavages forment un groupe bien étudié. Ils sont listés ici pour une comparaison rapide de leurs propriétés et de leurs noms de schéma variés ainsi que de leurs symboles. Cette liste inclut : tous les 75… …   Wikipédia en Français

  • Liste des polyedres uniformes — Liste des polyèdres uniformes Les polyèdres uniformes et les pavages forment un groupe bien étudié. Ils sont listés ici pour une comparaison rapide de leurs propriétés et de leurs noms de schéma variés ainsi que de leurs symboles. Cette liste… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”