Caracteristique d'Euler

Caracteristique d'Euler

Caractéristique d'Euler

La caractéristique d'Euler — ou d'Euler-Poincaré — est un invariant numérique, un nombre qui décrit un aspect d'une forme de l'espace topologique ou de la structure. Elle est communément notée par \chi\,.

La caractéristique d'Euler fut définie à l'origine pour les polyèdres et fut utilisée pour démontrer divers théorèmes les concernant, incluant la classification des solides de Platon. Leonhard Euler, par qui le concept eut son nom, fut responsable pour beaucoup dans ce travail de pionnier. En mathématiques plus modernes la caractéristique d'Euler apparait dans l'homologie et les méthodes cohomologiques. Elle est donnée en général par la somme alternée des dimensions des groupes de cohomologie considérés :

\chi=\sum_{i=0}^{\infty}(-1)^i \mathrm{dim}(H^i)

Sommaire

Polyèdres

Article détaillé : Théorème de Descartes-Euler.

La caractéristique d'Euler tient son nom du théorème de Descartes-Euler concernant l'étude des polyèdres convexes.

Descartes puis Euler ont remarqué que, pour des polyèdres convexes, la quantité S - A + F, où S correspond au nombre de sommets, A au nombre d'arêtes et F au nombre de faces, restait constamment égale à 2.

La caractéristique d'Euler pour des polyèdres a donc été définie par

\chi = S - A + F \,

Constante égale à 2 pour les polyèdres convexes, elle varie dans le cas des polyèdres non convexes pouvant être de - 6 par exemple pour un petit dodécaèdre étoilé, - 4 pour l'octangle étoilé, elle est de 0 pour un polyèdre torique à un trou.

Topologie algébrique

Définition formelle

Les polyèdres discutés ci-dessus sont, en langage moderne, des CW-complexes finis à deux dimensions. (lorsque seules les faces triangulaires sont utilisées, ils sont appelés complexes simpliciaux finis à deux dimensions). En général, pour un CW-complexe fini quelconque, la caractéristique d'Euler peut être définie comme la somme alternée, en dimension d :

\chi = k_0 - k_1 + k_2 - k_3 + \cdots +(-1)^d k_d ,

kn désigne le nombre de cellules de dimensions n dans le complexe ; cette somme vaut 1 − ( − 1)d pour les polytopes convexes.

Plus généralement encore, pour un espace topologique quelconque, nous pouvons définir le ne nombre de Betti bn comme le rang du ne groupe homologique. La caractéristique d'Euler peut alors être définie comme la somme alternée

\chi = b_0 - b_1 + b_2 - b_3 + \cdots.

Cette quantité est bien définie si les nombres de Betti sont tous finis et s'ils sont égaux à zéro au-delà d'un certain indice n0. Cette définition englobe les précédentes.

La même définition s'applique également aux variétés de dimension quelconque. Par exemple, c = 2 pour la sphère, c = 1 pour le disque du plan et le plan projectif, et c = 0 pour le tore et la bouteille de Klein.

Propriétés

Un espace contractible quelconque, (c’est-à-dire, un équivalent homotopique à un point) possède une homologie triviale, ce qui signifie que le 0e nombre de Betti est 1 et les autres 0. Par conséquent, sa caractéristique d'Euler est 1. Ce cas inclut l'espace euclidien \R^n de dimension quelconque, autant que la boule solide unitaire dans un espace euclidien quelconque — l'intervalle à une dimension, le disque à deux dimensions, la boule à trois dimensions, etc.

La caractéristique d'Euler peut être calculée facilement pour des surfaces générales par un maillage sur la surface (c’est-à-dire, une description sous la forme d'un complexe CW). Pour un objet, elle représente le nombre de singularités nécessaires pour mailler cet objet avec ses géodésiques.

Exemples

  • La sphère usuelle a pour caractéristique 2. Plus généralement, la sphère Sn contenue dans \mathbb R^{n+1} a pour caractéristique 2 si n est pair, et 0 si n est impair. Le cercle S1 a pour caractéristique 0.
  • Le tore a une caractéristique nulle : il est possible de le mailler sans introduire de singularité. Plus généralement, le tore à n trous a pour caractéristique 2-2n.
  • l'espace projectif réel de dimension n a pour caractéristique 1 si n est pair, et 0 sinon.
Nom Image caractéristique d'Euler
Sphère Sphere.jpg 2
Tore Torus.jpg 0
Ruban de Möbius MobiusStrip-01.png 0
Bouteille de Klein KleinBottle-01.png 0
Deux sphères (non connexe) Sphere.jpgSphere.jpg 2 + 2 = 4
Plan projectif ou Surface de Boy Surface Boy2.png 1

Théorie des groupes

Dans le cas de la cohomologie des pro-p-groupes, la caractéristique d'Euler permet par exemple de caractériser la dimension cohomologique : soit G un pro-p- groupe, alors, G est de dimension cohomologique inférieure à n si et seulement si la caractéristique d'Euler tronquée à l'ordre n est multiplicative à travers les sous-groupes ouverts de G, c'est-à-dire si et seulement si :

\forall U<_o G,\sum_{i=0}^n (-1)^i \mathrm{dim}_{\mathbf{F}_p} H^i(U,\mathbf{F}_p)=(G:U)\sum_{i=0}^n (-1)^i \mathrm{dim}_{\mathbf{F}_p} H^i(G,\mathbf{F}_p)

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Caract%C3%A9ristique d%27Euler ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Caracteristique d'Euler de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Caractéristique d'Euler — En mathématiques, et plus précisément en géométrie et en topologie algébrique, la caractéristique d Euler ou d Euler Poincaré est un invariant numérique, un nombre qui décrit un aspect d une forme d un espace topologique ou de la structure de cet …   Wikipédia en Français

  • Caractéristique d'Euler-Poincaré — Caractéristique d Euler La caractéristique d Euler ou d Euler Poincaré est un invariant numérique, un nombre qui décrit un aspect d une forme de l espace topologique ou de la structure. Elle est communément notée par . La caractéristique d Euler… …   Wikipédia en Français

  • Caracteristique (homonymie) — Caractéristique (homonymie) Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. De manière générale, le terme caractéristique désigne un élément qui permet de distinguer des objets ou des êtres de nature… …   Wikipédia en Français

  • Caractéristique (Homonymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. De manière générale, le terme caractéristique désigne un élément qui permet de distinguer des objets ou des êtres de nature semblable. En mathématiques,… …   Wikipédia en Français

  • Caractéristique (homonymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. De manière générale, le terme caractéristique désigne un élément qui permet de distinguer des objets ou des êtres de nature semblable. En mathématiques,… …   Wikipédia en Français

  • Euler — Leonhard Euler « Euler » redirige ici. Pour les autres significations, voir Euler (homonymie). Leonhard Euler …   Wikipédia en Français

  • Caractéristique — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « Caractéristique », sur le Wiktionnaire (dictionnaire universel) Le terme caractéristique désigne, de… …   Wikipédia en Français

  • Relation d'Euler — Théorème de Descartes Euler Le théorème de Descartes Euler (ou relation d Euler), formulé par Leonhard Euler en 1752, énonce une formule mathématique qui relie le nombre de côtés, de sommets, et de faces dans un polyèdre du genre 0. Un polyèdre… …   Wikipédia en Français

  • Theoreme de Descartes-Euler — Théorème de Descartes Euler Le théorème de Descartes Euler (ou relation d Euler), formulé par Leonhard Euler en 1752, énonce une formule mathématique qui relie le nombre de côtés, de sommets, et de faces dans un polyèdre du genre 0. Un polyèdre… …   Wikipédia en Français

  • Théorème de Descartes-Euler — Le théorème de Descartes Euler (ou relation d Euler), formulé par Leonhard Euler en 1752, énonce une formule mathématique qui relie le nombre de côtés, de sommets, et de faces dans un polyèdre de genre 0 (c est à dire, intuitivement, un polyèdre… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”