Acide nucléique

Acide nucléique

Les acides nucléiques sont des macromolécules, c’est-à-dire de grosses molécules relativement complexes. Ils entrent dans la famille des biomolécules puisqu’ils sont d’une très grande importance dans le règne de la vie, « bios » signifiant vie en grec.

Les acides nucléiques sont des polymères dont l’unité de base, ou monomère, est le nucléotide. Ces nucléotides sont reliés par des liaisons phosphodiester.

Sommaire

Types d'acide nucléique

  • Il existe deux types d’acides nucléiques : l'acide désoxyribonucléique (ADN) et l'acide ribonucléique (ARN). L’ADN contient l’information génétique. L’ARN est la copie de l'ADN (souvent en un seul brin alors que l'ADN est une double hélice = deux brins).
  • Différence entre l'ADN et l'ARN : l'ADN est le support de l'information génétique, il contient le génome, tout ce qui est nécessaire à la formation des protéines, mais ne peut sortir du noyau. L'ARN joue plusieurs rôles: il peut être le messager qui copie l'information génétique de l'ADN, il peut aussi jouer un rôle catalytique, ce qui est lié à sa capacité à former des structures complexes. Il est exporté du noyau par les pores nucléaires pour fournir l'information et permettre la synthèse des protéines par les ribosomes.

Propriétés physiques

Absorbance : 260 nm

Localisation

On trouve des acides nucléiques (ADN et ARN) dans les cellules de presque chaque organisme. Toute cellule eucaryote ou procaryote, soit les cellules animales, les cellules végétales, les bactéries, les mycètes (ou champignons) et même les mitochondries et les chloroplastes contiennent les deux types d’acide nucléique. Toutefois, les virus peuvent contenir de l’ADN ou de l’ARN, mais jamais les deux en même temps.

Chez les eucaryotes, l’ADN se trouve dans le noyau cellulaire, dans la matrice des mitochondries et dans le stroma des plastes. Il s’associe à des protéines comme des histones. Cet agencement d’ADN et de protéines forme la chromatine que l’on retrouve sous forme de chromosomes linéaires chez les eucaryotes (bien visibles durant la mitose) et sous forme de chromosome circulaire unique chez les procaryotes.

Pour sa part, l’ARN se trouve dans le noyau et dans le cytosol.

Composition

Structure schématique d'une molécule d'ADN, en bas à gauche un nucléotide

Les acides nucléiques sont constitués d'un enchaînement de nucléotides. Les nucléotides formant l'ADN sont des désoxyribonucléotides tandis que ceux formant l'ARN sont des ribonucléotides. Les nucléotides se composent toujours de trois éléments fondamentaux :

  • un sucre (ose à 5 carbones ou pentose)
  • un groupe phosphate (acide phosphorique)
  • une base azotée.

Liaisons

On trouve différents types de liaisons dans les acides nucléiques : les liaisons fortes permettent la stabilité de la molécule, tandis que les liaisons faibles assurent la flexibilité nécessaire aux processus cellulaires comme la réplication, la transcription ou la traduction.

Liaisons phosphodiester

Dans les acides nucléiques, les différents nucléotides sont placés bout à bout et liés les uns aux autres par des liens 5’- 3’ (prononcé 5 prime – 3 prime) phosphodiester (PO4) : ces chiffres donnent le sens de la liaison : 5' - Nucléotide 1 - PO4 - Nucléotide 2 - PO4 - ... - 3'.

Le phosphate se lie au carbone 3 du sucre du premier nucléotide et au carbone 5 du sucre du nucléotide suivant ; tout ceci par l'intermédiaire de deux liaisons ester. Les liaisons phosphodiester sont des liens covalents. Le phosphate est donc le lien entre chaque sucre.

Liaisons covalentes

Les bases azotées sont attachées sur le carbone 1' des sucres par des liaisons covalentes.

Les sucres du squelette sont reliés par des liaisons phosphodiester. Ce sont des liaisons ester covalentes entre un une fonction alcool du sucre (5'-OH ou 3'-OH) et l'acide phosphorique.

Création du squelette

L’alternance des phosphates et des sucres produit le squelette de l’acide nucléique sur lequel s’attachent les bases azotées. Le polymère formé se nomme un brin et a l’allure schématique d’une « corde ».

Le squelette est une partie relativement rigide puisqu'il est composé de liens covalents, des liens chimiques très forts.

Liaisons hydrogène

Dans le cas de l’ADN, les deux brins sont disposés de telle sorte que toutes les bases azotées se retrouvent au centre de la structure. Cette structure appelée double hélice est maintenue par des liaisons hydrogène qui se forment entre les bases azotées complémentaires. L'adénine s’associant toujours avec la thymine (dans l'ADN) ou l’uracile (dans l'ARN) à l’aide de deux liens hydrogène et la guanine s’associant toujours avec la cytosine à l’aide de trois liens hydrogène. Les liaisons hydrogènes sont des liaisons faibles que la cellule peut aisément défaire.

Création de la structure hélicoïdale

Structure 3D de la molécule d'ADN

Les deux brins (plus souvent retrouvés dans l'ADN, rares dans l'ARN) prennent la forme d'une double hélice (structure hélicoïdale). Cette structure souple est idéale pour permettre aux protéines telles les polymérases, les primases et les ligases, de dupliquer l'ADN.

Rôles

Ensemble, l’ADN et l’ARN jouent un rôle fondamental : ils sont le support de l’information génétique.

Rôle de l'ADN

L’ADN est le support de l’information génétique et détermine l'identité biologique de l’organisme (plante, grenouille ou humain). La préservation de cette information génétique se fait grâce à une duplication des molécules d'ADN avant la mitose (création de deux cellules filles identiques).

Rôle de l'ARN

L’ARN possède de nombreux rôles. Il existe différents types d’ARN et chacun d’entre eux joue un rôle spécifique.

  • L'ARN messager (ARNm) : est le produit de la maturation de l'ARN pré-messager (ARNpm), qui lui est le produit de la transcription opérée sur l’ADN. La maturation des ARNpm consiste en différentes modifications de la séquence telles que l'édition ou l'épissage. L'épissage de l'ARNpm consiste à enlever les introns et à relier les exons les uns à la suite des autres. Cette chaîne d'exons constitue alors l'ARN messager « produit final ». Contrairement à l'ARN prémessager, l'ARN messager quitte le noyau et est ultimement traduit en peptide dans le cytosol ou encore dans le réticulum endoplasmique. L'ARNm est le « plan de construction » d’une protéine. Il n'y a pas d'épissage chez les Procaryotes où l'ARN produit par la transcription est directement l'ARNm (en effet ces organismes ne possèdent pas de noyau et les ribosomes se fixent sur la molécule d'ARN pendant qu'elle est synthétisée). Dans le cas des eucaryotes L'ARN prémessager nucléaire peut aussi être appelé ARN nucléaire hétérogène (ARNnh) car il se retrouve strictement dans le noyau et est composé d'introns et d'exons.
Voir code génétique pour savoir quels acides aminés sont associés à quels codons.
  • Les microARN (miARN) : découverts en 1993 par Victor Ambros chez le ver Caenorhabditis elegans. Ils possèdent une structure simple brin et sont longs de 19 à 25 nucléotides. Ils jouent un rôle dans le métabolisme cellulaire en empêchant la traduction de certains ARN messager en peptides. En se liant à des ARN messagers dont ils sont partiellement complémentaires, les microARN entraînent le blocage de la traduction de l'ARNm par les ribosomes.

Les miARN peuvent réguler l'expression de plusieurs gènes (peut-être une centaine pour certains d'entre eux).

  • Les petits ARN interférents (pARNi) sont des petits ARN de 21-22 nucléotides parfaitement complémentaires à leurs ARNm cibles. Contrairement aux miRNA, les petits ARN interférents ne sont pas codés par le génome de la cellule hôte mais plutôt apportés par un éventuel envahisseur tel que les virus. De plus, ils possèdent une structure en double brin, et leur action consiste à dégrader les ARNm. Elle s'effectue en collaboration avec des protéines appelées RISC (RNA Induced Silencing Complex). Ces dernières se fixent sur le brin antisens (complémentaire au brin codant) du petit ARN interférent, le brin sens est abandonné, et le complexe (RISC + ARN simple brin antisens) ainsi formé peut reconnaître le fragment d'ARNm correspondant et le détruire, empêchant ainsi l'expression du gène associé.

Les petits ARN interférents sont plus spécifiques que les microARN : ils sont conçus pour reconnaître un seul gène.

Ces ARN courts sont devenus un outil très utilisé en biologie moléculaire pour éteindre un à un les gènes dont on souhaite déterminer le rôle métabolique. Leur spécificité d'action fait des petits ARN interférents une voie très étudiée dans la lutte contre le cancer et les maladies virales.

  • Petit ARN nucléaire, Petit ARN nucléolaire, scaRNA (small cajal bodies RNA) : ce sont de courtes chaînes de ribonucléotides (qui se retrouve exclusivement dans le noyau et plus précisément dans des compartiments du noyau comme le nucléole pr les snoRNA et les corps de Cajal pour les scaRNA. Ces ARN non codants s'associent à des protéines pour former des complexes nommés petites ribonucléoprotéines nucléaires (pRNPn), essentiels lors du processus d'épissage des ARN prémessagers et lors du processus de maturation des ARNr et ARNtm

Acides nucléiques dans les virus

Les cellules eucaryotes et procaryotes possèdent à la fois de l’ADN et de l’ARN. À l'inverse chez les virus, il n’y a qu’un seul type d'acide nucléique : soit de l’ADN soit de l’ARN, qui peuvent être monocaténaire ou bicaténaire.

On sépare les virus en plusieurs classes, selon la forme sous laquelle est présenté leur matériel génétique. Par exemple le génome du VIH est sous forme d'ARN.

Voir aussi

Sur les autres projets Wikimedia :

Bibliographie

  • Donald Voet et Judith G. Voet, Biochimie, De Boeck Université, Paris, 1998.
  • Elaine N. Marieb, Anatomie et physiologie humaine, éditions du renouveau pédagogique Inc., Montréal, 1999.
  • Gerard J. Tortora, Berdell R. Funke et Christine L. Case, Introduction à la microbiologie, éditions du renouveau pédagogique Inc., Montréal, 2003.
  • Neil A. Campbell, Biologie, éditions du renouveau pédagogique Inc., Montréal, 1995.
  • Wayne M Becker, Lewis J. Kleinsmith et Jeff Hardin, The World of the Cell 5th edition, Benjammin Cummings, San Francisco, 2003.

Articles connexes



Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Acide nucléique de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Acide Nucléique — Les acides nucléiques sont des macromolécules, c’est à dire de grosses molécules relativement complexes. Ils entrent dans la famille des biomolécules puisqu’ils sont d’une très grande importance dans le règne de la vie, « bios »… …   Wikipédia en Français

  • Acide nucleique — Acide nucléique Les acides nucléiques sont des macromolécules, c’est à dire de grosses molécules relativement complexes. Ils entrent dans la famille des biomolécules puisqu’ils sont d’une très grande importance dans le règne de la vie,… …   Wikipédia en Français

  • Acide nucléique — ● Acide nucléique substance chimique portant, dans chaque cellule, les instructions héréditaires codées qui permettent le développement de l organisme …   Encyclopédie Universelle

  • Acide nucleique peptidique — Acide nucléique peptidique Pour les articles homonymes, voir ANP et PNA. L acide nucléique peptidique (ANP) ou Peptide Nucleic Acid, (PNA) en anglais, est une molécule aux bases similaires à l ADN ou à l ARN mais qui se différencie par son… …   Wikipédia en Français

  • Acide nucléique bloqué — Un acide nucléique bloqué (ou locked nucleic acid, LNA) est un analogue d acide nucléique contenant un pont méthylène entre l hydroxyle en position 2 et l atome de carbone 4 du sucre …   Wikipédia en Français

  • Acide nucléique à glycol — Pour les articles homonymes, voir ANG et GNA. Un acide nucléique à glycol, ou ANG, est un polymère organique synthétique ayant la même conformation que l ADN et l ARN, mais qui en diffère par la nature du squelette de ses brins : alors que… …   Wikipédia en Français

  • Acide nucléique à thréose — Pour les articles homonymes, voir ANT et TNA. Un acide nucléique à thréose, désigné par son sigle ANT (ou TNA, de l anglais Threose nucleic acid), est un polymère organique synthétique ayant la même conformation que l ADN et l ARN, mais qui en… …   Wikipédia en Français

  • Acide nucléique peptidique — Pour les articles homonymes, voir ANP et PNA. L acide nucléique peptidique (ANP) ou Peptide Nucleic Acid, (PNA) en anglais, est une molécule aux bases similaires à l ADN ou à l ARN mais qui se différencie par son squelette ( backbone en anglais) …   Wikipédia en Français

  • Brin (acide nucléique) — Brin d acide nucléique Les molécules d acides nucléiques peuvent être assimilées à de long brins ou fil, mais à une échelle atomique. Il existe des molécules monocaténaires (formées d un seul brin comme le brin d ARN et certaines formes d ADN) ou …   Wikipédia en Français

  • Brin d'acide nucleique — Brin d acide nucléique Les molécules d acides nucléiques peuvent être assimilées à de long brins ou fil, mais à une échelle atomique. Il existe des molécules monocaténaires (formées d un seul brin comme le brin d ARN et certaines formes d ADN) ou …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”