Theorema egregium

Theorema egregium

En mathématiques, et plus précisément en géométrie, le theorema egregium (« théorème remarquable » en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des surfaces. Il dit que celle-ci peut être entièrement déterminée en mesurant les angles et les distances d'une surface, c'est-à-dire qu'elle ne dépend pas de la manière dont la surface peut être plongée dans l'espace tridimensionnel.

Énoncé

Considérons une surface de l'espace euclidien3. La distance intrinsèque entre deux points est définie comme l'infimum des longueurs des courbes tracées sur la surface et joignant ces deux points. (par exemple la distance intrinsèque de deux points opposés de la sphère unité est π, alors que leur distance euclidienne est 2). Une courbe minimisant la longueur entre deux points s'appelle une géodésique.

Deux surfaces sont isométriques s'il existe une bijection entre les deux surfaces préservant la distance. Elles sont localement isométriques s'il existe une telle bijection définie au voisinage d'un point.

La courbure de Gauss d'une surface s'obtient de plusieurs manières :

  • comme le produit du maximum et du minimum de la courbure d'une géodésique passant par ce point, ou, ce qui revient au même, de la courbure en ce point des intersections de la surface avec les plans passant par la normale
  • comme le rapport entre l'aire d'un voisinage infinitésimal du point et l'aire de son image sur la sphère par l'application normale.

Dans ces deux définitions, on voit que la courbure de Gauss dépend, a priori de la manière dont la surface est plongée dans l'espace: on peut obtenir des surfaces localement isométriques par des plongements distincts de la surface dans l'espace. L'exemple le plus simple est donné par l'exemple du plan et la surface d'un cylindre :

comme on peut enrouler une feuille de papier plane sur un cylindre, on obtient une isométrie locale du plan sur le cylindre. En effet la déformation (sans froissage) d'une feuille de papier ne modifie pas la distance entre deux points proches.

En langage moderne, le théorème peut s'énoncer ainsi:

La courbure de Gauss d'une surface est invariante par isométrie locale.

Ce théorème est remarquable car la définition de la courbure de Gauss utilise directement le plongement de la surface dans l'espace. Il est donc assez étonnant que le résultat final ne dépende pas du plongement.

La démonstration est subtile, et pas toujours transparente : si on représente la surface par une équation, ou mieux, une représentation paramétrique, ce qui est caché derrière est une commutation de dérivées d'ordre 3.

Applications simples

Il est impossible de plier une feuille de papier pour en faire une sphère. Plus formellement, le plan et la 2-sphère ne sont pas localement isométriques. Ceci provient du fait que le plan a une courbure de Gauss constante égale à 0 tandis qu'aucun point de la sphère n'a une courbure nulle. (On peut pourtant démontrer ce fait plus directement).

Des points correspondants sur une caténoïde et une hélicoïde (deux surfaces d'aspect très différent) ont la même courbure de Gauss. (Ces deux surfaces sont localement isométriques).

Voir aussi


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Theorema egregium de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Theorema egregium —   [lateinisch egregius »hervorragend«], ein von C. F. Gauss 1827 angegebener Satz der Flächentheorie, nach dem die gaußsche Krümmung invariant ist unter isometrischen Abbildungen …   Universal-Lexikon

  • Theorema egregium — Das Theorema egregium ist ein Satz aus der Differentialgeometrie, einem Teilgebiet der Mathematik. Er wurde von Carl Friedrich Gauß gefunden und in knapper Formulierung lautet er: Die Gaußsche Krümmung einer Fläche ist eine Größe der inneren… …   Deutsch Wikipedia

  • Theorema egregium — Una consecuencia del theorema egregium es que no puede existir un mapa a escala de la Tierra sin distorsión, al tener la superficie de la tierra y el plano diferentes curvaturas gaussianas. La proyección de Mercator, mostrada en la imagen,… …   Wikipedia Español

  • Theorema Egregium — Gauss s Theorema Egregium (Latin: Remarkable Theorem ) is a foundational result in differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces. Informally, the theorem says that the Gaussian curvature of a surface …   Wikipedia

  • Theorema egregrium — Theorema egregium Le Theorema Egregium (« théorème remarquable » en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des surfaces. Il dit que celle ci peut être entièrement déterminée en… …   Wikipédia en Français

  • Beau théorème de Gauss — Theorema egregium Le Theorema Egregium (« théorème remarquable » en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des surfaces. Il dit que celle ci peut être entièrement déterminée en… …   Wikipédia en Français

  • ГАУССА ТЕОРЕМА — (theorema egregium): гауссова кривизна (произведение главных кривизн) регулярной поверхности в евклидовом пространстве не меняется при изгибаниях поверхности. (Здесь регулярность означает гладкое погружение.) Г. т. следует из того, что гауссова… …   Математическая энциклопедия

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • Géométrie différentielle des surfaces — En mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies… …   Wikipédia en Français

  • Gaussian curvature — In differential geometry, the Gaussian curvature or Gauss curvature of a point on a surface is the product of the principal curvatures, κ 1 and κ 2, of the given point. It is an intrinsic measure of curvature, i.e., its value depends only on how… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”