- Cellule (biologie)
-
Pour les articles homonymes, voir cellule.
La cellule (du latin cellula petite chambre) est l'unité structurale, fonctionnelle et reproductrice constituant tout ou partie d'un être vivant (à l'exception des virus). Chaque cellule est une entité vivante qui, dans le cas d'organismes multicellulaires, fonctionne de manière autonome, mais coordonnée avec les autres. Les cellules de même type sont réunies en tissus, eux-mêmes réunis en organes.
La théorie cellulaire implique l'unité de tout le vivant : tous les êtres vivants sont composés de cellules dont la structure fondamentale est commune ainsi que l'homéostasie du milieu intérieur, milieu de composition physico-chimique régulé et propice au développement des cellules de l'espèce considérée.
Sommaire
- 1 Histoire du concept
- 2 Notion de cellule
- 3 Principales structures cellulaires
- 4 Méthodes d'étude de la cellule in vitro
- 5 Numération des cellules
- 6 Notes et références
- 7 Voir aussi
Histoire du concept
- 1665 : Robert Hooke découvre des cellules mortes dans du liège, ces cellules lui font penser aux cellules d'un monastère, d'où le nom. Puis il observe des cellules dans des plantes vivantes, en utilisant les premiers microscopes.
- 1839 : Theodor Schwann découvre que les plantes et les animaux sont tous faits de cellules, concluant que la cellule est l'unité commune de structure et de développement, ce qui fonda la théorie cellulaire. Il donna son nom aux cellules de Schwann.
- La croyance selon laquelle des formes de vie peuvent apparaître spontanément (génération spontanée) est réfutée par Louis Pasteur (1822-1895).
- 1858 : Rudolf Virchow affirma que les cellules naissent du résultat de la division cellulaire (« omnis cellula ex cellula »), ce qui repose en termes cellulaires la question de l'œuf et de la poule. C'est précisément cette partie qui est attaquée par les tenants du créationnisme ou de son dernier avatar, le dessein intelligent.
Théorie cellulaire
Article détaillé : Théorie cellulaire.- La cellule est l'unité constitutive des organismes vivants. Elle en est aussi l'unité fonctionnelle.
- L'organisme dépend de l'activité des cellules isolées ou groupées en tissus pour assurer les différentes fonctions.
- Les activités biochimiques des cellules sont coordonnées et déterminées par certaines structures présentes à l'intérieur des cellules.
- La multiplication des cellules permet le maintien des organismes et leur multiplication.
- Cette théorie est formulée en 1838 par Schleiden et Schwann : la cellule est unité de vie (tout ce qui est vivant est cellulaire). Cette théorie évoque également la présence d'organites à l'intérieur de ces mêmes cellules.
Notion de cellule
Ici on se demande avant tout quelles sont les caractéristiques communes aux cellules, malgré leur diversité.
Machine à produire de l'ordre
La cellule représente un état hautement organisé de la matière : maintenir cet ordre tout en étant soumis aux principes de la thermodynamique nécessite la mise en place de structures permettant d'utiliser l'énergie et la matière extérieure (on crée de l'ordre au niveau de la cellule mais l'entropie globale augmente) ; la cellule est donc un système thermodynamiquement ouvert.
Espace clos effectuant des échanges avec l'extérieur
La cellule constitue une unité spatiale, délimitée par une membrane. Celle-ci, loin d'être une limite hermétique, constitue une surface d'échanges permettant la mise en place de flux.
Les membranes plasmiques, malgré leur diversité possèdent, sauf exceptions (certaines archées thermophiles possédant une seule couche de lipides), une structure identique :
- une bicouche phospholipidique composée de lipides amphiphiles, qui constitue un filtre de base permettant le passage des substances hydrophobes, freinant celui des hydrophiles.
- des protéines transmembranaires et périphériques aux rôles divers (transferts, transport, transduction de signaux...)
La membrane agit non seulement comme un filtre, c'est-à-dire en laissant passer certaines molécules selon la différence de concentration (appelée à tort gradient de concentration) mais aussi en utilisant de l'énergie (osmotique, chimique...) pour favoriser les flux endergoniques. Elle permet aussi le passage de la lumière, de la chaleur... En tant que surface de contact avec l'extérieur, elle assure aussi la transmission d'informations nécessaires à la réactivité de la cellule aux changements de l'environnement et à la coordination avec d'autres cellules.
La membrane plasmique crée donc un espace clos en constant échange avec l'environnement proche.
Compartimentation : mise en place de microenvironnements aux propriétés spécifiques
La présence d'une membrane biologique entourant un espace, que ce soit le cytoplasme ou la lumière d'un organite, va permettre, en contrôlant les échanges des macromolécules, des ions (et de toute autre molécule) l'établissement de conditions favorisant certaines réactions par rapport à d'autres : en variant les différents facteurs physico-chimiques (pH, concentration en ions...), la nature des enzymes et des produits, leur nombre...
Cet environnement permet ainsi la biosynthèse et la dégradation de molécules organiques, et ainsi le maintien d'une structure hautement organisée par un recyclage constant des molécules qui le forment.
Cette compartimentation se trouve particulièrement poussée dans le cas des eucaryotes : elle permet la spécialisation fonctionnelle des différents organites (la composition de leur lumière étant différente, ils sont le siège de réactions différentes : on va ainsi pouvoir favoriser la production de tel produit dans un compartiment, sa destruction dans un autre).
Flux organisé de matière et d'énergie
Cette structure de base (une membrane organisant les échanges entourant un compartiment, lieu de réactions chimiques spécifiques) va permettre la mise en place et le maintien de flux de matière, d'énergie, d'information... traversant la cellule. Il y a donc une réelle organisation des échanges cellule-extérieur, qui va permettre au « système cellule » (au sens thermodynamique) de maintenir sa structure hautement organisée.
Finalement, la cellule ne constitue pas une structure stable et immuable mais plutôt une entité dynamique nécessitant un apport constant de matière et d'énergie pour permettre son fonctionnement et le maintien de sa structure : seule son organisation persiste, ses constituants étant en perpétuel renouvellement.
Le potentiel de repos de la cellule détermine la différence de potentiel (-70 mV environ[réf. nécessaire]), avec l'intérieur de la cellule négatif.
Cellule vectrice de gènes
Cette structure résulte de l'expression d'un programme génétique complexe (permettant notamment la synthèse d'enzymes dont on vient de voir l'importance). Celui-ci doit être transmis, en même temps que la structure de base, au cours des divisions cellulaires. La cellule peut donc être considérée non seulement comme l'unité structurelle du vivant mais aussi comme un vecteur de gènes assurant leur transmission au fil des générations.
Transmission des gènes et cycle cellulaire
La division cellulaire aboutissant, à partir d'une cellule mère, à deux cellules filles contenant le même génome (aux erreurs de copie près) nécessite la succession de phases de synthèse protéique permettant le renouvellement et la croissance cellulaire, de synthèse d'ADN et enfin de partition plus ou moins équitable de la cellule.
La synthèse protéique résulte de l'expression du matériel génétique, elle se déroule en plusieurs étapes : transcription de l'ADN en ARN, traduction de l'ARN en une chaîne polypeptidique, repliement de celle-ci (chez les eucaryotes s'insèrent des phases de maturation où l'on coupe et modifie la séquence synthétisée). La copie du génome est réalisée par toute une machinerie protéique permettant à l'ADN polymérase d'accéder à la séquence et de la copier, selon le principe d'appariement des bases.
La partition de la cellule se fait par des mécanismes différents chez les procaryotes et les eucaryotes (nommée alors mitose) : celle-ci consiste en la partition et la transmission du génome intégral de la cellule mère.
Reproduction sexuée et cycle du développement
La cellule est là aussi le vecteur de gènes et permet un brassage génétique au sein de la population grâce aux processus cellulaires que sont la méiose et la fécondation.
La reproduction sexuée est caractéristique des eucaryotes, mais il existe des mécanismes de brassage génétique chez les procaryotes.
Mort cellulaire : la cellule au service de l'organisme et des gènes
La cellule ayant reçu un signal de son environnement va exprimer un programme entraînant sa mort (l'apoptose étant un de ces mécanismes) : ce phénomène est nécessaire au développement des organismes pluricellulaires ; autant chez les végétaux (avec par exemple la mort des cellules formant le tube criblé), que chez les animaux (lors de la mise en place de la main chez l'homme : on a initialement une main palmée, la mort des cellules permet l'individualisation des doigts). Ce phénomène a aussi été découvert chez certaines bactéries (la mort cellulaire permet de limiter le nombre de bactéries lorsque les ressources sont insuffisantes).
La cellule, tant pour les êtres pluricellulaires que pour les unicellulaires, constitue une structure vouée avant tout à permettre la reproduction de l'organisme et donc la transmission d'une structure de base contenant un programme génétique. Ainsi, certains auteurs ont été amenés à formuler la théorie du gène égoïste, considérant les organismes (et donc les cellules) comme de simples structures destinées à assurer la transmission et la prolifération des gènes (le gène proliférant alors pour lui-même est qualifié d'égoïste).
Interdépendance cellulaire : de la cellule à l'organisme
La cellule, en constant échange avec l'extérieur dépend entièrement de celui-ci. Elle dépend aussi et surtout des autres cellules, à plusieurs niveaux :
Êtres unicellulaires : la cellule « bonne à tout faire »
Ici, l'être vivant ne comporte qu'une cellule : celle-ci doit donc assurer toutes les fonctions vitales (se nourrir, intégrer et réagir aux variations du milieu, proliférer...)
La cellule est donc en quelque sorte autonome mais elle dépend tout de même des autres cellules (rares sont les cellules ne prélevant que dans le milieu des composés exclusivement inorganiques).
Il peut donc exister une interdépendance cellulaire, même pour les êtres unicellulaires.
Organisme pluricellulaire : une communauté de cellules interdépendantes
Ses cellules sont totalement dépendantes du bon fonctionnement des autres cellules: chacune d'entre elles, bien qu'ayant le même matériel génétique (à de rares exceptions près: les gamètes, les lymphocytes par exemple), exprime un programme génétique particulier qui la maintient dans une voie de différenciation (plus ou moins poussée). Cette spécialisation implique le fractionnement d'opérations effectuées dans une seule cellule pour les unicellulaires : les cellules d'un même organisme s'organisent en différentes structures (tissus organes systèmes....) réalisant des fonctions particulières. Ce fractionnement des fonctions nécessite une coordination entre cellules d'où l'émergence de systèmes de communication entre cellules.
On a donc une interdépendance forte au sein même de l'organisme qui se superpose à la dépendance aux autres êtres vivants.
Cellule eucaryote : formation de communautés de cellules intracellulaires
La théorie endosymbiotique (théorie démontrée en ce qui concerne les mitochondries et les chloroplastes) énonce que les cellules eucaryotes se sont formées à partir d'une cellule procaryote ayant phagocyté puis domestiqué des bactéries : celles-ci seraient à l'origine des mitochondries. L'invagination de cyanobactéries aurait donné naissance aux chloroplastes.
La cellule eucaryote dérive donc de l'association symbiotique de bactéries qui sont devenues totalement interdépendantes au point de former une seule et même unité structurale et fonctionnelle.
Principales structures cellulaires
Il existe deux types fondamentaux de cellules selon qu'elles possèdent ou non un noyau :
- les procaryotes dont l'ADN est libre dans le cytoplasme (les bactéries, par exemple). Ils comprennent les eubactéries et les archéobactéries ;
- les eucaryotes qui ont une organisation complexe, de nombreux organites et dont le noyau est entouré d'une membrane nucléaire.
Principales différences entre les cellules procaryotes et eucaryotes Procaryotes Eucaryotes représentants bactéries, archées protistes, champignons, plantes, animaux Taille typique ~ 1-10 µm ~ 10-100 µm Type de noyau nucléoïde; pas de véritable noyau vrai noyau avec une enveloppe ADN circulaire (chromosome), avec des protéines HU pour eubactéries molécules linéaires (chromosomes) avec des protéines histone ARN/synthèse des protéines couplé au cytoplasme synthèse d'ARN dans le noyau
synthèse de protéines dans le cytoplasmeRibosomes 23S+16S+5S 28S+18S+5,8S+5S Structure cytoplasmique très peu de structures très structuré par des membranes intracellulaires et un cytosquelette Mouvement de la cellule flagelle fait de flagelline flagelle et cils fait de tubuline Métabolisme anaérobie ou aérobie habituellement aérobie Mitochondries aucune de une à plusieurs milliers Chloroplastes aucun dans les algues et les plantes chlorophylliennes Organisation habituellement des cellules isolées cellules isolées, colonies, organismes complexes avec des cellules spécialisées Division de la cellule division simple Mitose (multiplication conforme de la cellule)
Méiose (formation de gamètes)Eubactéries
- Le cytoplasme des procaryotes (le contenu de la cellule) est diffus et granulaire, du fait des ribosomes (complexe macromoléculaire responsable de la synthèse des protéines).
- La membrane plasmique isole l'intérieur de la cellule de son environnement, et sert de filtre et de porte de communication.
- Il y a souvent[1] une paroi cellulaire. Elle est formée de peptidoglycane chez les eubactéries, et joue le rôle de barrière supplémentaire contre les forces extérieures. Elle empêche également la cellule d'éclater sous la pression osmotique dans un environnement hypotonique.
- L'ADN des procaryotes se compose d'une molécule circulaire super enroulée. Bien que sans véritable noyau, l'ADN est toutefois condensé en un nucléoïde.
Les procaryotes peuvent posséder un ADN extra-chromosomal, organisé en molécules circulaires appelées plasmides. Ils peuvent avoir des fonctions supplémentaires, telles que la résistance aux antibiotiques. Certains procaryotes ont un flagelle leur permettant de se déplacer activement, plutôt que de dériver passivement.
Spécificités des archées
Les archéobactéries (archaea) sont considérées comme similaires à certains des premiers organismes qui existèrent sur Terre. On les rencontre notamment dans des milieux extrêmes (elles sont souvent appelées extrémophiles), tels que geysers, monts hydrothermaux, les fonds abyssaux. Certaines peuvent résister à des pressions et des températures extrêmes, et avoir un métabolisme basé sur le méthane ou le soufre.
Cellule eucaryote
Organisation d'une cellule animale eucaryote typique. 1. Nucléole 2. Noyau 3. Ribosome 4. Vésicule 5. Réticulum endoplasmique rugueux (granuleux) 6. Appareil de Golgi 7. Microtubule 8. Réticulum endoplasmique lisse 9. Mitochondrie 10. Lysosome 11. Cytoplasme (rempli par le cytosol) 12. Peroxysome 13. Centrosome - Le cytoplasme n'est pas aussi granulaire que celui des procaryotes, puisque la majeure partie de ses ribosomes sont rattachés au réticulum endoplasmique.
- La membrane plasmique ressemble, dans sa fonction, à celle des procaryotes, avec quelques différences mineures dans sa configuration.
- La paroi cellulosique, quand elle existe (végétaux), est composée de polysaccharides, principalement la cellulose.
- L'ADN des eucaryotes est organisé en une ou plusieurs molécules linéaires. Ces molécules se condensent en s'enroulant autour d'histones lors de la division cellulaire. Tous les chromosomes de l'ADN sont stockés dans le noyau, séparés du cytoplasme par une membrane. Les eucaryotes ne possèdent pas de plasmides : seuls quelques organites peuvent contenir de l'ADN.
- Certaines cellules eucaryotes peuvent devenir mobiles, en utilisant un cil ou un flagelle (spermatozoïde par exemple). Leur flagelle est plus évolué que celui des procaryotes.
Les eucaryotes contiennent plusieurs organites. Ce sont des compartiments cellulaires baignant dans le hyaloplasme. Ils sont délimités par une membrane plasmique (simple, double ou triple) et possèdent des fonctions spécifiques.
- Le réticulum endoplasmique (RE) est une extension de la membrane du noyau. Il est divisé en RE lisse (REL) et RE rugueux (RER) (parfois appelé RE granuleux REG), en fonction de son apparence au microscope. La surface du RE rugueux est couverte de ribosomes qui insèrent les protéines néosynthétisées dans le RE. Du RE, les protéines sont transportées vers l'appareil de Golgi grâce à des vésicules.
- L'appareil de Golgi est le lieu de transformation finale des protéines. La glycosylation (ajout de chaînes glucidiques complexes) se réalise à ce niveau.
- Les mitochondries jouent un rôle important dans le métabolisme de la cellule. Elles contiennent leur propre génome (l'ADN mitochondrial). C'est là que se déroulent la respiration cellulaire et la fabrication de l'énergie, l'ATP (Adénosine TriPhosphate). Cette énergie est indispensable aux réactions métaboliques.
- Le cytosquelette permet à la cellule de conserver sa forme (Tenségrité) et de se mouvoir. Il est également important lors de la division cellulaire, et dans le système de transport intracellulaire.
- Les plastes sont présents dans les plantes et les algues. Les plus connus sont les chloroplastes, dans les cellules d'organismes photosynthétiques, qui convertissent l'énergie lumineuse du Soleil en énergie chimique utilisée pour fabriquer des sucres à partir de dioxyde de carbone (phase sombre de la photosynthèse). Ils possèdent également leur propre génome. Ils sont le fruit de l'endosymbiose d'une cyanobactéries.
- Chez les plantes, les algues et les champignons, la cellule est encerclée par une paroi cellulaire pectocellulosique qui fournit un squelette à l'organisme[2]. Des dépositions de composés tels que la subérine ou la lignine modulent les propriétés physico-chimiques de la paroi, la rendant plus solide ou plus imperméable, par exemple.
Certains eucaryotes unicellulaires peuvent former des structures multicellulaires. Ces colonies consistent soit en des groupes de cellules identiques, capables de rester en vie une fois séparées de la colonie principale (par exemple, les champignons), soit en des groupes de cellules spécialisées interdépendantes.
La plus grande cellule du monde vivant est en poids, le jaune d’œuf d'autruche dont la masse est comprise entre 1,2 et 1,9 kg, et en longueur le neurone de calmar géant ou du calmar colossal dont l'axone peut atteindre 12 mètre[3].
Méthodes d'étude de la cellule in vitro
Microscopie
La microscopie optique (résolution de +/- 0,25µm en lumière visible) permet l'observation de la structure des cellules eucaryotes.
La microscopie électronique (résolution de quelques Angströms) révèle l'ultrastructure de celles-ci et permet une observation plus poussée de la structure des cellules procaryotes comme eucaryotes.
Marquage de molécules
Pour étudier l'organisation subcellulaire des cellules au microscope, les tissus peuvent, en fonction de la méthode choisie, être vivants, ce qui permet une observation dynamique, ou fixés et préparés en coupes histologiques, ce qui permet en général une observation plus précise, mais figée et ponctuelle.
Localisation subcellulaire par l'utilisation de gènes rapporteurs tels que la GFP (green fluorescing protein) et la luciférase, par immunocytochimie, ou grâce à des molécules radioactives.
Différentes colorations, vitales ou non, permettent l'observation des structures au microscope optique : rouge neutre pour les vacuoles, violet dahlia ou cristal pour le noyau...
Étude des constituants cellulaires
Isolement de structures : par choc osmotique, ou grâce à des détergents puis par centrifugation.
Purification de protéines : par électrophorèse, centrifugation, chromatographie, dialyse....
Numération des cellules
Il est fréquent de devoir compter le nombre de cellules vivantes dans une boîte de culture et de le comparer au nombre de cellules total, par exemple pour déterminer la toxicité d'un produit. L'une de ces méthodes de numération est réalisée grâce au test MTT.
Notes et références
- mycoplasmes, par exemple pas chez les
- Geoffrey M. Cooper, La cellule : une approche moléculaire, De Boeck Université, 1999, p. 502
- Frédéric Flamant, De l'œuf à la poule, Belin, 2001, 159 p.
Voir aussi
Articles connexes
Liens externes
- (fr) Dossier Sagascience du CNRS : la cellule animale
- (fr) Qu'est ce qu'une cellule : La cellule en microcinéma
- (fr) Schéma détaillé d'une cellule animale.
- (fr) Schéma détaillé d'une cellule végétale.
- (fr) Exploration 3D d'une cellule : sinauer.com, aimediaserver.com
- (de) Cell Biology - Graphics
- biologie cellulaire des molécules aux organismes, Jean Claude Callen
- Voir la vidéo "the inner life of the cell" faite par BioVision (harvard)
- Voir la vidéo sur la cellule dans l'encyclopédie médicale Vulgaris
- Portail de la biologie cellulaire et moléculaire
Wikimedia Foundation. 2010.