Espace propre généralisé

Espace propre généralisé

Sous-espace caractéristique

Définitions

Soient E un K-espace vectoriel de dimension finie et u un endomorphisme de E. Soit \ \lambda \in \mathrm{sp}(u)

  • on appelle sous-espace caractéristique, sous-espace spectral, ou encore espace propre généralisé de  \ u associé à la valeur propre \ \lambda le sous espace : N_{\lambda}(u) = \ker\left[ (u- \lambda Id)^m \right] , Id étant l'application identité et m la multiplicité de λ dans le polynôme caractéristique de l'endomorphisme u.


  • \vec{v} \ est un vecteur propre généralisé de u associé à la valeur propre λ s'il existe  \ k\geq 1 \ tel que  \ \vec{v}\in\ker\left(u-\lambda Id\right)^k\smallsetminus\{\vec{0}\}


Remarque : Cette définition implique que \vec{v}\in N_{\lambda}(u) \ \Longleftrightarrow \ \vec{v} \ est un vecteur propre généralisé de u associé à λ.


Intérêt

Les sous-espaces caractéristiques sont utilisés dans la caractérisation de la trigonalisation d'un endomorphisme. En effet un endomorphisme u d'un espace vectoriel E est trigonalisable si et seulement si E est la somme (directe) des sous-espaces caractéristiques de u, c'est-à-dire si et seulement si il existe une base de E formée de vecteurs propres généralisés de u. Cette caractérisation rejoint celle donnée à l'aide du polynôme caractéristique qui doit être scindé pour que l'endomorphisme soit trigonalisable.

Article détaillé : Réduction de Jordan.


  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Sous-espace caract%C3%A9ristique ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Espace propre généralisé de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Espace propre généralisé et vecteurs propres — Sous espace caractéristique Définitions Soient E un K espace vectoriel de dimension finie et u un endomorphisme de E. Soit on appelle sous espace caractéristique, sous espace spectral, ou encore espace propre généralisé de associé à la valeur… …   Wikipédia en Français

  • Vecteur propre généralisé — Sous espace caractéristique Définitions Soient E un K espace vectoriel de dimension finie et u un endomorphisme de E. Soit on appelle sous espace caractéristique, sous espace spectral, ou encore espace propre généralisé de associé à la valeur… …   Wikipédia en Français

  • Espace propre — Valeur propre, vecteur propre et espace propre Fig. 1. Cette application linéaire déforme la statue de David. Les vecteurs bleus ont pour images les vecteurs verts. Ils gardent la même direction, ce sont des vecteurs propres. La valeur propre… …   Wikipédia en Français

  • Sous-espace propre — Valeur propre, vecteur propre et espace propre Fig. 1. Cette application linéaire déforme la statue de David. Les vecteurs bleus ont pour images les vecteurs verts. Ils gardent la même direction, ce sont des vecteurs propres. La valeur propre… …   Wikipédia en Français

  • Valeur propre, vecteur propre et espace propre — Fig. 1. A étire le vecteur x sans changer sa direction. x est un vecteur propre pour A, pour la valeur propre λ. En mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s appliquant à …   Wikipédia en Français

  • Espace et vecteurs propres généralisés — Sous espace caractéristique Définitions Soient E un K espace vectoriel de dimension finie et u un endomorphisme de E. Soit on appelle sous espace caractéristique, sous espace spectral, ou encore espace propre généralisé de associé à la valeur… …   Wikipédia en Français

  • Espace Euclidien — En mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le… …   Wikipédia en Français

  • Espace euclidien (algèbre linéaire) — Espace euclidien En mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique …   Wikipédia en Français

  • Espace Dual — En mathématiques, l espace dual d un espace vectoriel E est l ensemble des formes linéaires sur E. La structure d un espace et celle de son dual sont très liées. La fin de cet article présente quelques résultats sur les liens entre espace dual et …   Wikipédia en Français

  • Espace vectoriel — En algèbre linéaire, un espace vectoriel est un ensemble muni d une structure permettant d effectuer des combinaisons linéaires. Étant donné un corps K, un espace vectoriel E sur K est un groupe commutatif (dont la loi est notée +) muni d une… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”