- Trou noir espace-temps
-
Trou noir
Pour les articles homonymes, voir Trou noir (homonymie).En astrophysique, un trou noir est un objet massif dont le champ gravitationnel est si intense qu’il empêche toute forme de matière ou de rayonnement de s’en échapper. De tels objets n’émettent donc pas de lumière et sont alors noirs. Les trous noirs sont décrits par la théorie de la relativité générale. Ils ne sont pas directement observables, mais plusieurs techniques d’observation indirecte dans différentes longueurs d’onde ont été mises au point et permettent d’étudier les phénomènes qu’ils induisent sur leur environnement. En particulier, la matière qui est happée par un trou noir est chauffée à des températures considérables avant d'être engloutie et émet de ce fait une quantité importante de rayons X. Ainsi, même si un trou noir n'émet pas lui-même de rayonnement, il peut néanmoins être détectable par son action sur son environnement. L'existence des trous noirs est une certitude pour la quasi-totalité de la communauté scientifique concernée (astrophysiciens et physiciens théoriciens).
Sommaire
Présentation et terminologie
Un trou noir possède une masse donnée, concentrée en un point appelé singularité gravitationnelle. Cette masse permet de définir une sphère appelée horizon du trou noir, centrée sur la singularité et dont le rayon est une limite maximale en-deçà duquel le trou noir empêche tout rayonnement de s’échapper. Cette sphère représente en quelque sorte l’extension spatiale du trou noir. Pour un trou noir de masse égale à la masse du Soleil, son rayon vaut environ 3 kilomètres[1]. À une distance interstellaire (en millions de kilomètres), un trou noir n’exerce pas plus d’attraction que n’importe quel autre corps de même masse ; il ne s’agit donc pas d’un « aspirateur » irrésistible. Par exemple, si le Soleil se trouvait remplacé par un trou noir de même masse, les orbites de ses planètes resteraient inchangées.
Il existe plusieurs sortes de trous noirs. Lorsqu’ils se forment à la suite de l’effondrement gravitationnel d’une étoile, on parle de trou noir stellaire. Quand on les trouve au centre des galaxies, ils ont une masse pouvant aller jusqu’à plusieurs milliards de masses solaires et on parle alors de trou noir supermassif (ou trou noir galactique). Entre ces deux échelles de masse, on pense qu’il existe des trous noirs intermédiaires avec une masse de quelques milliers de masses solaires. Des trous noirs de masse bien plus faible, qui auraient été formés au début de l’histoire de l’univers, au Big Bang, sont aussi envisagés, et sont appelés trous noirs primordiaux. Leur existence n’est, à l’heure actuelle, pas confirmée.
Il est impossible d’observer directement un trou noir. Il est cependant possible de déduire sa présence par son action gravitationnelle sur son environnement, notamment au sein des microquasars et des noyaux actifs de galaxies, où de la matière à proximité tombant sur le trou noir va se trouver considérablement chauffée et émettre un fort rayonnement X. Les observations permettent ainsi de déceler l’existence d’objets massifs et de très petite taille. Les seuls objets que ces observations impliquent et qui sont compatibles dans le cadre de la relativité générale sont les trous noirs.
Historique
Article détaillé : Historique des trous noirs.Le concept de trou noir a émergé à la fin du XVIIIe siècle dans le cadre de la gravitation universelle d’Isaac Newton. La question était de savoir s’il existait des objets dont la masse était suffisamment grande pour que leur vitesse de libération soit plus grande que la vitesse de la lumière. Cependant, ce n’est qu’au début du XXe siècle et avec l’avènement de la relativité générale d’Albert Einstein que le concept de trou noir devient plus qu’une curiosité. En effet, peu après la publication des travaux d’Einstein, une solution de l’équation d’Einstein impliquant l’existence d’un trou noir central est publiée par Karl Schwarzschild[2]. Les travaux fondamentaux sur les trous noirs remontent aux années 1960, précédant de peu les premières indications observationnelles solides en faveur de leur existence. La première « observation » [3],[4] d’un objet contenant un trou noir fut celle de la source de rayons X Cygnus X-1 par le satellite Uhuru en 1971. Le terme de « trou noir » a émergé, dans le courant des années 1960, par l’intermédiaire du physicien américain Kip Thorne. Auparavant, on utilisait les termes de « corps de Schwarzschild » ou d’« astre occlus ». Le terme de « trou noir » a rencontré des réticences dans certaines communautés linguistiques, notamment francophones et russophones, qui le jugeaient quelque peu inconvenant[5].
Propriétés
Un trou noir est un objet astrophysique comme un autre. Il se caractérise par le fait qu’il est très difficile à observer directement (voir ci-dessous), et que sa région centrale ne peut être décrite de façon satisfaisante par les théories physiques en leur état du début du XXIe siècle, car elle abrite une singularité gravitationnelle. Cette dernière ne peut être décrite que dans le cadre d’une théorie de la gravitation quantique, manquante à ce jour[6]. Par contre, on sait parfaitement décrire les conditions physiques qui règnent dans son voisinage immédiat, de même que son influence sur son environnement, ce qui permet de les détecter par diverses méthodes indirectes.
Par ailleurs, les trous noirs sont étonnants en ce qu’ils sont décrits par un très petit nombre de paramètres. En effet, leur description, dans l’univers dans lequel nous vivons, ne dépend que de trois paramètres : la masse, la charge électrique et le moment cinétique. Tous les autres paramètres du trou noir (par exemple sa taille ou sa forme) sont fixés par ceux-là. Par comparaison, la description d’une planète fait intervenir des centaines de paramètres (composition chimique, différenciation de ses éléments, convection, atmosphère, etc.). La raison pour laquelle un trou noir n’est décrit que par ces trois paramètres est connue depuis 1967 : c’est le théorème de calvitie démontré par Werner Israel. Celui-ci explique que les seules interactions fondamentales à longue portée étant la gravitation et l’électromagnétisme, les seules propriétés mesurables des trous noirs sont données par les paramètres décrivant ces interactions, à savoir la masse, le moment cinétique et la charge électrique.
Pour un trou noir, la masse et la charge électrique sont des propriétés habituelles que décrit la physique classique (c'est-à-dire non-relativiste) : le trou noir possède un champ gravitationnel proportionnel à sa masse et un champ électrique proportionnel à sa charge. L'influence du moment cinétique est par contre spécifique à la relativité générale. Celle-là stipule en effet qu'un corps en rotation va avoir tendance à « entraîner » l'espace-temps dans son voisinage. Ce phénomène, non encore observé à l'heure actuelle dans le système solaire en raison de son extrême faiblesse pour des astres non compacts, est connu sous le nom d'effet Lense-Thirring (aussi appelé frame dragging, en anglais)[7]. Il prend une amplitude considérable au voisinage d'un trou noir en rotation, au point qu'un observateur situé dans son voisinage immédiat serait inévitablement entraîné dans le sens de rotation du trou noir. La région où ceci se produit est appelée ergorégion.
Quatre types théoriques possibles…
Les quatre types théoriques de trous noirs en fonction du moment cinétique (J) et de la charge électrique (Q). La masse (M) est toujours strictement positive. M > 0 J = 0 J ≠ 0 Q = 0 Schwarzschild Kerr Q ≠ 0 Reissner-Nordström Kerr-Newman Un trou noir possède toujours une masse non nulle. En revanche, ses deux autres caractéristiques, à savoir le moment cinétique (rotation) et la charge électrique, peuvent en principe prendre des valeurs nulles (c’est-à-dire égales à zéro) ou non nulles. La combinaison de ces états permet de définir quatre types de trous noirs.
Quand la charge électrique et le moment cinétique sont nuls, on parle de trou noir de Schwarzschild, du nom de Karl Schwarzschild qui, le premier, a mis en évidence ces objets comme solutions des équations de la relativité générale (les équations d'Einstein), en 1916.
Quand la charge électrique est non nulle et le moment cinétique nul, on parle de trou noir de Reissner-Nordström. Ces trous noirs ne présentent pas d’intérêt astrophysique notable, car aucun processus connu ne permet de fabriquer un objet compact conservant durablement une charge électrique significative ; celle-ci se dissipe normalement rapidement par absorption de charges électriques opposées prises à son environnement[8]. Un trou noir de Reissner-Nordström est donc un objet théorique très improbable dans la nature.
Si le trou noir possède un moment cinétique (c’est-à-dire qu’il est en rotation sur lui-même) mais n’a pas de charge électrique, on parle de trou noir de Kerr, du nom du mathématicien néo-zélandais Roy Kerr qui a trouvé la formule décrivant ces objets en 1963. Contrairement aux trous noirs de Reissner-Nordström et de Schwarzschild, les trous noirs de Kerr présentent un intérêt astrophysique considérable, car les modèles de formation et d’évolution des trous noirs indiquent que ceux-ci ont tendance à absorber la matière environnante par l’intermédiaire d’un disque d'accrétion dans lequel la matière tombe en spiralant toujours dans le même sens dans le trou noir. Ainsi, la matière communique du moment cinétique au trou noir qui l’engloutit. Les trous noirs de Kerr sont donc les seuls que l’on s’attend réellement à rencontrer en astronomie. Cependant, il reste possible que des trous noirs à moment cinétique très faible, s’apparentant en pratique à des trous noirs de Schwarzschild, existent.
La version électriquement chargée du trou noir de Kerr, dotée comme lui d’une rotation, est connue sous le nom de trou noir de Kerr-Newman et ne présente comme le trou noir de Reissner-Nordström ou celui de Schwarzschild que peu d’intérêt astrophysique eut égard à sa très faible probabilité.
… Et une multitude d’autres
D’un point de vue théorique, il peut exister une multitude d’autres types de trous noirs avec des propriétés différentes. Par exemple, il existe un analogue du trou noir de Reissner-Nordström, mais en remplaçant la charge électrique par une charge magnétique, c’est-à-dire créée par des monopôles magnétiques, dont l’existence reste extrêmement hypothétique à ce jour. On peut de même généraliser le concept de trou noir à des espaces comprenant plus de trois dimensions. Ceci permet d’exhiber des types de trous noirs ayant des propriétés parfois différentes de celles des trous noirs présentés ci-dessus[9].
Le trou et le noir…
L’existence des trous noirs est envisagée dès le XVIIIe siècle indépendamment par John Michell[10] et Pierre-Simon Laplace. Il s’agissait alors d’objets prédits comme tellement denses que leur vitesse de libération était supérieure à la vitesse de la lumière — c’est-à-dire que même la lumière ne peut vaincre leur force gravitationnelle. Plutôt qu’une telle force (qui est un concept newtonien), il est plus juste de dire que la lumière subit en fait un décalage vers le rouge infini. Ce décalage vers le rouge est d’origine gravitationnelle : la lumière perd la totalité de son énergie en essayant de sortir du puits de potentiel d’un trou noir. Ce décalage vers le rouge est donc d’une nature quelque peu différente de celui dû à l’expansion de l’univers, que l’on observe pour les galaxies lointaines et qui résulte d’une expansion d’un espace ne présentant pas de puits de potentiels très profonds. De cette caractéristique provient l’adjectif « noir », puisqu’un trou noir ne peut émettre de lumière. Ce qui est valable pour la lumière l’est aussi pour la matière : aucune particule ne peut s’échapper d’un trou noir une fois capturée par celui-ci, d’où le terme de « trou » fort approprié.
Horizon des événements
Articles détaillés : Horizon des événements et Horizon (trou noir).La zone qui délimite la région d’où lumière et matière ne peuvent s’échapper, est appelée « horizon des événements ». On parle parfois de « surface » du trou noir, quoique le terme soit quelque peu impropre (il ne s’agit pas d’une surface solide ou gazeuse comme la surface d’une planète ou d’une étoile). Il ne s’agit pas d’une région qui présente des caractéristiques particulières : un observateur qui franchirait l’horizon ne ressentirait rien de spécial à ce moment-là (voir ci-dessous). Par contre, il se rendrait compte qu’il ne peut plus s’échapper de cette région s’il essayait de faire demi-tour. C'est une sorte de point de non retour. En substance, c’est une situation qui est un peu analogue à celle d’un baigneur qui s’éloignerait de la côte. Si par exemple le baigneur ne peut nager que deux kilomètres, il ne ressentira rien s’il s’éloigne à plus d’un kilomètre de la côte. Par contre, s’il fait demi-tour, il se rendra compte qu’il n’a pas assez d’énergie pour atteindre la rive.
En revanche, un observateur situé au voisinage de l’horizon remarquera que le temps s’écoule différemment pour lui et pour un observateur situé loin du trou noir. Si ce dernier lui envoie des signaux lumineux à intervalles réguliers (par exemple une seconde), alors l’observateur proche du trou noir recevra des signaux plus énergétiques (la fréquence des signaux lumineux sera plus élevée, conséquence du décalage vers le bleu subi par la lumière qui tombe vers le trou noir), et les intervalles de temps séparant deux signaux consécutifs seront plus rapprochés (moins d’une seconde, donc). Cet observateur aura donc l’impression que le temps s’écoule plus vite pour son confrère resté loin du trou noir que pour lui. À l’inverse, l’observateur resté loin du trou noir verra son collègue évoluer de plus en plus lentement, le temps chez celui-ci donnant l’impression de s’écouler plus lentement.
Si l’observateur distant voit un objet tomber dans un trou noir, les deux phénomènes de dilatation du temps et de décalage vers le rouge vont se combiner. Les éventuels signaux émis par l’objet seront de plus en plus rouges, de moins en moins lumineux (la lumière émise perd de plus en plus d’énergie avant d’arriver à l’observateur lointain), et de plus en plus espacés. En pratique, le nombre de photons reçus par l’observateur distant va décroître très rapidement, jusqu’à devenir nul : à ce moment-là l’objet en train de chuter dans le trou noir est devenu invisible. Même si l’observateur distant tente d’approcher l’horizon en vue de récupérer l’objet qu’il a eu l’impression de voir s’arrêter juste avant l’horizon, celui-ci demeurera invisible[11].
Pour un observateur s’approchant d’une singularité, ce sont les effets de marée qui vont devenir importants. Ces effets, qui déterminent les déformations d’un objet (le corps d’un astronaute, par exemple) du fait des inhomogénéités du champ gravitationnel, seront inéluctablement ressentis par un observateur s’approchant de trop près d’un trou noir ou d’une singularité. La région où ces effets de marée deviennent importants est entièrement située dans l’horizon pour les trous noirs supermassifs, mais empiète notablement hors de l’horizon pour des trous noirs stellaires[12]. Ainsi, un observateur s’approchant d’un trou noir stellaire serait déchiqueté avant de passer l’horizon, alors que le même observateur qui s’approcherait d’un trou noir supermassif passerait l’horizon sans encombre. Il serait tout de même inéluctablement détruit par les effets de marée en s'approchant de la singularité.
Singularité
Article détaillé : Singularité gravitationnelle.Au centre d’un trou noir se situe une région dans laquelle le champ gravitationnel et les distorsions de l’espace (on parle plutôt de courbure de l’espace) deviennent infinis. Cette région s’appelle une singularité gravitationnelle. La description de cette région est délicate dans le cadre de la relativité générale puisque celle-ci ne peut décrire des régions où la courbure devient infinie.
De plus, la relativité générale est une théorie qui ne peut pas incorporer en général des effets gravitationnels d’origine quantique. Or quand la courbure tend vers l’infini, on peut montrer que celle-ci est nécessairement sujette à des effets de nature quantique. Par conséquent, seule une théorie de la gravitation incorporant tous les effets quantiques (on parle alors de gravitation quantique) est en mesure de décrire correctement les singularités gravitationnelles.
La description d’une singularité gravitationnelle est donc pour l’heure problématique[6]. Néanmoins, tant que celle-ci est située à l’intérieur d’un trou noir, elle ne peut influencer l’extérieur d’un trou noir, de la même façon que de la matière située à l’intérieur d’un trou noir ne peut en ressortir. Ainsi, aussi mystérieuses que soient les singularités gravitationnelles, notre incapacité à les décrire, signe de l’existence de limitations de la relativité générale à décrire tous les phénomènes gravitationnels, n’empêche pas la description des trous noirs pour la partie située de notre côté de l’horizon des événements.
Formation des trous noirs
La possibilité de l’existence des trous noirs n’est pas une conséquence exclusive de la relativité générale : la quasi-totalité des autres théories de la gravitation physiquement réalistes permet également leur existence. La relativité générale, à l’instar de la plupart de ces autres théories de la gravité, non seulement prédit que les trous noirs peuvent exister, mais aussi qu’ils seront formés partout où suffisamment de matière peut être compactée dans une région de l’espace. Par exemple, si l’on compressait le Soleil dans une sphère d’environ trois kilomètres de rayon (soit à peu près quatre millionièmes de sa taille), il deviendrait un trou noir. Si la Terre était compressée dans un volume de quelques centimètres cube, elle deviendrait également un trou noir.
Pour l’astrophysique, un trou noir peut être considéré comme le stade ultime d’un effondrement gravitationnel. Les deux stades de la matière qui, en termes de compacité, précèdent l’état de trou noir, sont ceux atteints par exemple par les naines blanches et les étoiles à neutrons. Dans le premier cas, c’est la pression de dégénérescence des électrons qui maintient la naine blanche dans un état d’équilibre face à la gravité. Dans le second, il ne s'agit pas de la pression de dégénérescence des nucléons, mais de l'interaction forte qui maintient l’équilibre[13]. Un trou noir ne peut se former suite à l'effondrement d'une naine blanche : celle-ci, en s'effondrant initie des réactions nucléaires qui forment des nucléons plus lourds que ceux qui la composent[14]. Ce faisant, le dégagement d'énergie qui en résulte est suffisant pour disloquer complètement la naine blanche, qui explose en supernova dite thermonucléaire (ou de type Ia).
Un trou noir se forme lorsque la force de gravité est suffisamment grande pour dépasser l’effet de la pression, chose qui se produit quand l'astre progéniteur dépasse une certaine masse critique. Dans ce cas, plus aucune force connue ne permet de maintenir l’équilibre, et l’objet en question s’effondre complètement. En pratique, plusieurs cas de figures sont possibles : soit une étoile à neutrons accrète de la matière issue d'une autre étoile, jusqu'à atteindre une masse critique, soit elle fusionne avec une autre étoile à neutron (phénomène a priori beaucoup plus rare), soit le cœur d'une étoile massive s'effondre directement en trou noir[15].
L’hypothèse de l’existence d’un état plus compact que celui d’étoile à neutrons a été proposée dans le courant des années 1980 ; ce serait celui des étoiles à quarks aussi appelées étoiles étranges en raison du nom donné pour des raisons historiques à certains des quarks constituant l’objet, appelés « quarks étranges[16] ». Des indications d’une possible détection indirecte de tels astres ont été obtenues depuis le courant des années 1990, sans trancher pour autant définitivement la question[17], mais cela ne change rien au fait qu'au-delà d'une certaine masse ce type d'astre finisse par s'effondrer en trou noir, seule la valeur de la masse limite change.
En 2006, on distingue quatre grandes classes de trous noirs en fonction de leur masse : les trous noirs stellaires, supermassifs, intermédiaires et primordiaux (ou micro trous noirs). L’existence voire l’abondance de chaque type de trou noir est directement liée à la possibilité de leur formation.
Trous noirs stellaires
Article détaillé : Trou noir stellaire.Les trous noirs stellaires ont une masse de quelques masses solaires. Ils naissent à la suite de l’effondrement gravitationnel du résidu des étoiles massives (environ dix masses solaires et plus, initialement). En effet, lorsque la combustion par les réactions thermonucléaires dans le cœur de l’étoile massive se termine, faute de carburant, une supernova se produit. Cette dernière peut laisser derrière elle un cœur qui continue à s’effondrer rapidement.
En 1939, Robert Oppenheimer a montré que si ce cœur a une masse supérieure à une certaine limite (appelée limite d'Oppenheimer-Volkoff, et égale à environ 3,3 masses solaires), la force gravitationnelle l’emporte définitivement sur toutes les autres forces et un trou noir se forme.
L’effondrement vers un trou noir est susceptible d’émettre des ondes gravitationnelles, qui devraient être détectées dans un futur proche avec des instruments tels que le détecteur Virgo de Cascina en Italie, ou avec les deux interféromètres américains de LIGO. Les trous noirs stellaires sont aujourd’hui observés dans les binaires X et les microquasars et sont responsables parfois de l’apparition de jets tels que ceux observés dans certains noyaux actifs de galaxies.
Trous noirs supermassifs
Article détaillé : Trou noir supermassif.Les trous noirs supermassifs ont une masse comprise entre quelques millions et quelques milliards de masses solaires. Ils se trouvent au centre des galaxies et leur présence provoque parfois l’apparition de jets et du rayonnement X. Les noyaux de galaxies qui sont ainsi plus lumineux qu’une simple superposition d’étoiles sont alors appelés noyaux actifs de galaxies.
Notre galaxie, la Voie lactée, contient un tel trou noir, ainsi qu’il a été démontré par l’observation des mouvements extrêmement rapides des étoiles proches du trou noir[18]. En particulier, une étoile nommée S2 a pu être observée lors d’une révolution complète autour d’un objet sombre non détecté en moins de onze ans. L’orbite elliptique de cette étoile l’a amenée à moins de vingt unités astronomiques de cet objet (soit une distance de l’ordre de celle Uranus-Soleil), et la vitesse à laquelle l’orbite est parcourue permet d’assigner une masse d’environ 2,3 millions de masses solaires pour l’objet sombre autour duquel elle gravite. Aucun modèle autre que celui d’un trou noir ne permet de rendre compte d’une telle concentration de matière dans un volume aussi restreint[19].
Le télescope Chandra a également permis d’observer au centre de la galaxie NGC 6240 deux trous noirs supermassifs en orbite l’un autour de l’autre. La formation de tels géants est encore débattue, mais certains pensent qu’ils se sont formés très rapidement au début de l’univers[20],[21].
Trous noirs intermédiaires
Article détaillé : Trou noir intermédiaire.Les trous noirs intermédiaires sont des objets récemment découverts et ont une masse entre 100 et 10 000 masses solaires[22]. Dans les années 1970, les trous noirs de masse intermédiaire étaient supposés se former dans le cœur des amas globulaires, mais aucune observation ne venait soutenir cette hypothèse. Des observations dans les années 2000 ont montré l’existence de sources de rayons X ultralumineuses (Ultra-luminous X-ray source en anglais, ou ULX)[23]. Ces sources ne sont apparemment pas associées au cœur des galaxies où l’on trouve les trous noirs supermassifs. De plus, la quantité de rayons X observée est trop importante pour être produite par un trou noir de 20 masses solaires, accrétant de la matière avec un taux égal à la limite d'Eddington (limite maximale pour un trou noir stellaire).
Trous noirs primordiaux
Article détaillé : Trou noir primordial.Les trous noirs primordiaux, aussi appelés micro trous noirs ou trous noirs quantiques, auraient une taille très petite. Ils se seraient formés durant le Big Bang (d’où l’appellation trou noir « primordial »), suite à l’effondrement gravitationnel de petites surdensités dans l’univers primordial. Dans les années 1970, les physiciens Stephen Hawking et Bernard Carr ont étudié un mécanisme de formation des trous noirs dans l’univers primordial. Ils avancèrent l’idée d’une profusion de mini-trous noirs, minuscules par rapport à ceux envisagés par la formation stellaire. La densité et la répartition en masse de ces trous noirs ne sont pas connues et dépendent essentiellement de la façon dont se produit une phase d’expansion rapide dans l’univers primordial, l’inflation cosmique. Ces trous noirs de faible masse émettent s’ils existent un rayonnement gamma qui pourrait éventuellement être détecté par des satellites comme INTEGRAL. La non détection de ce rayonnement permet de mettre des limites supérieures sur l’abondance et la répartition en masse de ces trous noirs.
Selon certains modèles de physique des hautes énergies, il pourrait être possible de créer des mini-trous noirs similaires en laboratoire[24], dans des accélérateurs de particules comme le LHC, installé près de Genève, en Suisse.
Observation des trous noirs
Article détaillé : Observation et détection des trous noirs.Les deux seules classes de trous noirs pour lesquelles on dispose d’observations nombreuses (indirectes, mais de plus en plus précises, voir paragraphe suivant) sont les trous noirs stellaires et supermassifs. Le trou noir supermassif le plus proche est celui qui se trouve au centre de notre Galaxie à environ 8 kilo-parsecs.
Une des premières méthodes de détection d’un trou noir est la détermination de la masse des deux composantes d’une étoile binaire, à partir des paramètres orbitaux. On a ainsi observé des étoiles de faible masse avec un mouvement orbital très prononcé (amplitude de plusieurs dizaines de km/s), mais dont le compagnon est invisible. Le compagnon massif invisible peut généralement être interprété comme une étoile à neutrons ou un trou noir puisqu’une étoile normale avec une telle masse se verrait très facilement. La masse du compagnon (ou la fonction de masses, si l’angle d’inclinaison est inconnu) est alors comparée à la masse limite maximale des étoiles à neutrons (environ 3,3 masses solaires). Si elle dépasse cette limite, on considère que l’objet est un trou noir. Sinon, il peut être une naine blanche.
On considère également que certains trous noirs stellaires apparaissent lors des sursauts de rayons gamma (ou GRB, pour gamma-ray burst en anglais). En effet, ces derniers se formeraient via l’explosion d’une étoile massive (comme une étoile Wolf-Rayet) en supernova, et que dans certains cas (décrits par le modèle collapsar), un flash de rayons gamma est produit au moment où le trou noir se forme. Ainsi, un GRB[25] pourrait représenter le signal de la naissance d’un trou noir. Des trous noirs de plus faible masse peuvent aussi être formés par des supernovae classiques. Le rémanent de la supernova 1987A est soupçonné d’être un trou noir, par exemple.
Un deuxième phénomène directement relié à la présence d’un trou noir, cette fois pas seulement de type stellaire, mais aussi supermassif, est la présence de jets observés principalement dans le domaine des ondes radio. Ces jets résultent des changements de champ magnétique à grande échelle se produisant dans le disque d’accrétion du trou noir.
Vers l’observation directe ?
La petitesse d’un trou noir stellaire (quelques kilomètres) rend son observation directe impossible. En guise d’exemple, et même si la taille angulaire d'un trou noir est plus grande que celle d’un objet classique de même rayon, un trou noir d’une masse solaire et situé à un parsec (environ 3,26 années-lumière) aurait un diamètre angulaire de 0,1 microseconde d'arc. Cependant, la situation est plus favorable pour un trou noir supermassif. En effet, la taille d’un trou noir est proportionnelle à sa masse. Le trou noir du centre galactique a une masse, bien estimée, d’environ 3,6 millions de masses solaires. Son rayon de Schwarzschild est donc d’environ 11 millions de kilomètres. La taille angulaire de ce trou noir, situé à environ 8,5 kiloparsecs est de l’ordre de 40 microsecondes d’arc. Cette résolution est inaccessible dans le domaine visible, mais est assez proche des limites actuellement atteignables en interférométrie radio. La technique de l’interférométrie radio, avec une sensibilité suffisante, est limitée en fréquence au domaine millimétrique. Un gain d’un ordre de grandeur en fréquence permettrait une résolution meilleure que la taille angulaire du trou noir. L’imagerie directe du trou noir du centre galactique est donc envisageable dans les années qui viennent. Le trou noir supermassif situé au centre de la galaxie M87 est environ 2 000 fois plus éloigné (18,7 Mpc), mais estimé près de 1 000 fois plus massif. Ce trou noir pourrait ainsi devenir le second trou noir imagé après celui de la Voie Lactée[26],[27].
Exemples de trous noirs stellaires
Cygnus X-1, détecté en 1965, est le premier objet astrophysique connu contenant un trou noir. C’est un système binaire constitué d’un trou noir en rotation et d’une étoile géante.
Les systèmes binaires stellaires qui contiennent un trou noir avec un disque d’accrétion formant des jets sont appelés microquasars, en référence à leurs parents extragalactiques : les quasars. Les deux classes d’objets partagent en fait les mêmes processus physiques. Parmi les microquasars les plus étudiés, on notera GRS 1915+105, découvert en 1994 pour avoir des jets supraluminiques. Un autre cas de tels jets fut détecté dans le système GRO J1655-40. Mais sa distance est sujette à controverse et ses jets pourraient ne pas être supraluminiques. Notons aussi le microquasar très spécial SS 433, qui a des jets persistants en précession, et où la matière se déplace par paquets à des vitesses de quelques fractions de la vitesse de la lumière.
Exemples de trous noirs supermassifs
Les candidats trous noirs supermassifs ont premièrement été les noyaux actifs de galaxie et les quasars découverts par les radioastronomes dans les années 1960. Cependant, les observations les plus convaincantes de l’existence de trous noirs supermassifs sont celles des orbites des étoiles autour du centre galactique appelé Sagitarius A*. L’orbite de ces étoiles et les vitesses atteintes, ont permis aujourd’hui d’exclure tout autre type d’objet qu’un trou noir supermassif à cet endroit de la galaxie. Par la suite, des trous noirs supermassifs ont été détectés dans de nombreuses autres galaxies.
En février 2005, une étoile géante bleue, appelée SDSS J090745.0+024507 fut observée quittant notre galaxie avec une vitesse deux fois supérieure à la vitesse de libération de la Voie lactée, soit 0,0022 fois la vitesse de la lumière. Quand on remonte la trajectoire de cette étoile, on voit qu’elle croise le voisinage immédiat du centre galactique. Sa vitesse et sa trajectoire confortent donc également l’idée de la présence d’un trou noir supermassif à cet endroit dont l’influence gravitationnelle aurait provoqué l’éjection de cette étoile de la Voie Lactée.
En novembre 2004, une équipe d’astronomes a rapporté la découverte du premier trou noir de masse intermédiaire dans notre galaxie et orbitant à seulement trois années-lumière du centre galactique. Ce trou noir aurait une masse d’environ 1 300 masses solaires et se trouve dans un amas de seulement sept étoiles. Cet amas est probablement le résidu d’un amas massif d’étoiles qui a été dénudé par la présence du trou noir central[28]. Cette observation conforte l’idée que les trous noirs supermassifs grandissent en absorbant des étoiles et autres trous noirs, qui pourra être confirmée par l’observation directe des ondes gravitationnelles émises par ce processus, par l’intermédiaire de l’interféromètre spatial LISA.
En juin 2004, des astronomes ont trouvé un trou noir supermassif, appelé Q0906+6930, au centre d’une galaxie lointaine d’environ 12,7 milliards d’années-lumière, c’est-à-dire lorsque l’univers était encore très jeune[29]. Cette observation montre que la formation des trous noirs supermassifs dans les galaxies est un phénomène relativement rapide.
Trous noirs et physique fondamentale
Théorèmes sur les singularités
Une question cruciale à propos des trous noirs est de savoir sous quelles conditions ils peuvent se former. Si les conditions nécessaires à leur formation sont extrêmement spécifiques, les chances que les trous noirs soient nombreux peuvent être faibles. Un ensemble de théorèmes mathématiques dus à Stephen Hawking et Roger Penrose a montré qu’il n’en était rien : la formation des trous noirs peut se produire dans une variété de conditions extrêmement génériques. Pour des raisons évidentes, ces travaux ont été nommés théorèmes sur les singularités. Ces théorèmes datent du début des années 1970, époque où il n’y avait guère de confirmation observationnelle de l’existence des trous noirs. Les observations ultérieures ont effectivement confirmé que les trous noirs étaient des objets très fréquents dans l’univers.
Singularités nues et censure cosmique
Article détaillé : Principe de censure cosmique.Au centre d’un trou noir se situe une singularité gravitationnelle. Pour tout type de trou noir, cette singularité est « cachée » du monde extérieur par l’horizon des événements. Cette situation s’avère très heureuse : la physique actuelle ne sait certes pas décrire une singularité gravitationnelle, mais cela a peu d’importance car, celle-là étant à l'intérieur de la zone délimitée par l’horizon, elle n’influe pas sur les événements du monde extérieur. Il se trouve cependant qu’il existe des solutions mathématiques aux équations de la relativité générale dans lesquelles une singularité existe sans être entourée d’un horizon. C’est par exemple le cas pour les solutions de Kerr ou de Reissner-Nordström quand la charge ou le moment cinétique dépasse une certaine valeur critique. Dans ce cas, on ne parle plus de trou noir (il n’y a plus d’horizon, donc plus de « trou ») mais de singularité nue. De telles configurations sont extrêmement difficiles à étudier en pratique, car la prédiction du comportement de la singularité reste toujours impossible ; mais cette fois, il influence l’univers dans lequel nous vivons. L’existence de singularités nues a donc pour conséquence l’impossibilité d’une évolution déterministe de l’univers dans l’état des connaissances actuelles[30].
Pourtant, les trous noirs de Kerr ou de Reissner-Nordström (ainsi que le cas général de Kerr-Newman) ne peuvent pas arriver à leurs valeurs critiques respectives par apport externe de moment cinétique ou de charges électriques. En effet, plus on se rapprocherait de la valeur critique d'un trou noir de Kerr, moins un objet externe pourrait augmenter son moment cinétique. De façon comparable, à l'approche de la charge maximale d'un trou noir de Reissner-Nordström, les charges électriques de même signe que celle du trou noir projetées vers celui-ci y parviendraient de plus en plus difficilement en raison de la répulsion électrostatique exercée par le trou noir. Pour amener les charges à pénétrer dans le trou noir, il faudrait les y projeter à une vitesse relativiste (à cause de la répulsion électrique), ce qui contribuerait à leur conférer une énergie croissante devenant bien supérieure à leur énergie de masse (au repos). D'où une contribution à la masse du trou noir, suffisante pour compenser l'augmentation de charge du trou noir. Au final, le rapport charge/masse du trou noir « saturerait » juste en dessous de la valeur critique[31].
Ces éléments, ainsi que des considérations plus fondamentales, ont conduit le mathématicien anglais Roger Penrose à formuler en 1969 l’hypothèse dite de la censure cosmique, stipulant qu’aucun processus physique ne pouvait permettre l’apparition de singularités nues dans l’univers. Cette hypothèse, qui possède plusieurs formulations possibles, a été l’objet d’un pari entre Stephen Hawking d’une part et Kip Thorne et John Preskill d’autre part, ces derniers ayant parié que des singularités nues pouvaient exister. En 1991, Stuart L. Shapiro et Saul A. Teukolsky montrèrent sur foi de simulations numériques que des singularités nues pouvaient se former dans l’univers. Quelques années plus tard, Matthew Choptuik mit en évidence un ensemble important de situations à partir desquelles la formation de singularités nues était possible. Ces configurations demeurent cependant extrêmement particulières, et nécessitent un ajustement fin des conditions initiales pour mener à la formation des singularités nues. Leur formation est donc possible, mais en pratique extrêmement improbable. En 1997 Stephen Hawking reconnut qu’il avait perdu son pari avec Kip Thorne et John Preskill. Un autre pari a depuis été lancé, où des conditions plus restrictives sur les conditions initiales pouvant mener à des singularités nues ont été rajoutées.
Entropie des trous noirs
Article détaillé : Entropie des trous noirs.En 1971, le physicien britannique Stephen Hawking montra que la surface totale des horizons des événements de n’importe quel trou noir classique ne peut jamais décroître. Cette propriété est tout à fait semblable à la deuxième loi de la thermodynamique, avec la surface jouant le rôle de l’entropie. Dans le cadre de la physique classique, on pourrait violer cette loi de la thermodynamique en envoyant de la matière dans un trou noir, ce qui la ferait disparaître de notre univers, avec la conséquence d’un décroissement de l’entropie totale de l’univers.
Pour éviter de violer cette loi, le physicien Jacob Bekenstein proposa qu’un trou noir possède une entropie (sans en préciser la nature exacte), et qu’elle soit proportionnelle à la surface de son horizon. Bekenstein pensait alors que les trous noirs n’émettent pas de radiation et que le lien avec la thermodynamique n’était qu’une simple analogie et pas une description physique des propriétés du trou noir. Néanmoins, Hawking a peu après démontré par un calcul de théorie quantique des champs que le résultat sur l’entropie des trous noirs est bien plus qu’une simple analogie et qu’il est possible de définir rigoureusement une température associée au rayonnement des trous noirs (voir ci-dessous).
Utilisant les équations de la thermodynamique des trous noirs, il apparaît que l’entropie d’un trou noir est proportionnelle à la surface de son horizon[32]. C’est un résultat universel qui peut être appliqué dans un autre contexte aux modèles cosmologiques comportant eux aussi un horizon comme par exemple l’univers de de Sitter. L’interprétation microscopique de cette entropie reste par contre un problème ouvert, auquel la théorie des cordes a cependant réussi à apporter des éléments de réponse partiels.
Il a été ensuite montré que les trous noirs sont des objets à entropie maximale, c’est-à-dire que l’entropie maximale d’une région de l’espace délimitée par une surface donnée est égale à celle du trou noir de même surface[33],[34]. Ce constat a amené les physiciens Gerard ’t Hooft et ensuite Leonard Susskind à proposer un ensemble d’idées, appelé principe holographique, basé sur le fait que la description de la surface d’une région permet de reconstituer toute l’information relative à son contenu, de la même façon qu’un hologramme code des informations relatives à un volume sur une simple surface, permettant ainsi de donner un effet de relief à partir d’une surface.
La découverte de l’entropie des trous noirs a ainsi permis le développement d’une analogie extrêmement profonde entre trous noirs et thermodynamique, la thermodynamique des trous noirs, qui pourrait aider dans la compréhension d’une théorie de la gravité quantique.
Évaporation et radiation de Hawking
Article détaillé : Évaporation des trous noirs.En 1974, Stephen Hawking appliqua la théorie quantique des champs à l’espace-temps courbé de la relativité générale, et découvrit que contrairement à ce que prédisait la mécanique classique, les trous noirs pouvaient effectivement émettre une radiation (proche d’une radiation thermique) aujourd’hui appelée rayonnement de Hawking[35] : les trous noirs ne sont donc pas complètement « noirs ».
La radiation de Hawking correspond en fait à un spectre de corps noir. On peut donc y associer la « température » du trou noir, qui est inversement proportionnelle à sa taille[36]. De ce fait, plus le trou noir est important, plus sa température est basse. Un trou noir de la masse de la planète Mercure aurait une température égale à celle du rayonnement de fond diffus cosmologique (à peu près 2,73 kelvins). Si le trou est plus massif, il sera donc plus froid que la température du fond et accroîtra son énergie plus vite qu’il n’en perdra via la radiation de Hawking, devenant ainsi encore plus froid. Un trou noir stellaire a ainsi une température de quelques microkelvins, ce qui rend la détection directe de son évaporation totalement inenvisageable. Cependant, pour des trous noirs moins massifs, la température est plus élevée, et la perte d’énergie associée lui permet de voir sa masse varier sur des échelles cosmologiques. Ainsi, un trou noir de quelques millions de tonnes s’évaporera-t-il en une durée inférieure à celle de l’âge de l'univers. Alors que le trou noir s’évapore, le trou noir devient plus petit, donc plus chaud. Certains astrophysiciens ont proposé que l’évaporation complète de trous noirs produirait un flash de rayons gamma. Ceci serait une signature de l’existence de trous noirs de très faible masse. Il s’agirait alors de trous noirs primordiaux. La recherche actuelle explore cette possibilité avec les données du satellite européen INTEGRAL[37].
Paradoxe de l’information
Article détaillé : Théorème de calvitie.Une question de physique fondamentale encore irrésolue au début du XXIe siècle est le fameux paradoxe de l’information. En effet, en raison du théorème de calvitie déjà cité, il n’est pas possible de déterminer a posteriori ce qui est entré dans le trou noir. Cependant, vue d’un observateur éloigné, l’information n’est jamais complètement détruite puisque la matière tombant dans le trou noir ne disparaît qu’après un temps infiniment long. Alors, l’information qui a formé le trou noir est-elle perdue ou pas ?
Des considérations générales sur ce que devrait être une théorie de la gravité quantique suggèrent qu’il ne peut y avoir qu’une quantité finie et limitée d’entropie (i.e. une quantité maximale et finie d’information) associée à l’espace près de l’horizon du trou noir. Mais la variation de l’entropie de l’horizon plus celle de la radiation Hawking est toujours suffisante pour prendre en compte toute l’entropie de la matière et de l’énergie tombant dans le trou noir… Mais restent de nombreuses questions. En particulier au niveau quantique, est-ce que l’état quantique de la radiation de Hawking est déterminé de manière unique par l’histoire de ce qui est tombé dans le trou noir ? De même, est-ce que l’histoire de ce qui est tombé est déterminée de manière unique par l’état quantique du trou noir et de sa radiation ? En d’autres termes, est-ce que les trous noirs sont, ou ne sont pas, déterministes ? Cette propriété est bien sûr conservée dans la relativité générale comme dans la physique classique, mais pas dans la mécanique quantique.
Pendant de longues années, Stephen Hawking a maintenu sa position originelle de 1975 voulant que la radiation de Hawking soit entièrement thermique, et donc complètement aléatoire, représentant ainsi une nouvelle source d’information non-déterministe. Cependant, le 21 juillet 2004, il présenta un nouvel argument, allant à l’opposé de sa première position[38],[39],[40]. Dans ses nouveaux calculs, l’entropie associée à un trou noir serait effectivement inaccessible à un observateur extérieur. De plus dans l’absence de cette information, il est impossible de relier de manière univoque l’information de la radiation de Hawking (contenue dans ses corrélations internes) à l’état initial du système. Cependant, si le trou noir s’évapore complètement, cette identification univoque peut être faite et l’unitarité est préservée (l’information est donc conservée). Il n’est pas clair que la communauté scientifique spécialisée soit absolument convaincue par les arguments présentés par Hawking[41]. Mais Hawking lui-même fut suffisamment convaincu pour régler le pari qu’il avait fait en 1997 avec le physicien John Preskill de Caltech, provoquant ainsi un énorme intérêt des médias.
En juillet 2005, l’annonce de Hawking a donné lieu à une publication dans la revue Physical Review[42] et fut débattue par la suite au sein de la communauté scientifique sans qu’un consensus net ne se dégage quant à la validité de l’approche proposée par Hawking[43],[44].
Trous noirs et trous de ver
Article détaillé : Trou de ver.La relativité générale indique qu’il existerait des configurations dans lesquelles deux trous noirs sont reliés l’un à l’autre. Une telle configuration est habituellement appelée trou de ver ou plus rarement pont d’Einstein-Rosen. De telles configurations ont beaucoup inspiré les auteurs de science-fiction (voir par exemple les références de la section Culture populaire) car elles proposent un moyen de voyager très rapidement sur de grandes distances, voir voyager dans le temps. En pratique, de telles configurations, si elles sont autorisées par la relativité générale, semblent totalement irréalisables dans un contexte astrophysique, car aucun processus connu ne semble permettre la formation de tels objets[45].
Culture populaire
Quand on parle de « culture populaire » à propos de trou noir, on pense souvent à science-fiction. On y trouve, au cinéma ou dans le domaine littéraire, beaucoup d’inspiration.
Dans les films
- Le Trou noir (1979), de Gary Nelson, est un film des studios Disney.
- Event Horizon, le vaisseau de l'au-delà (1997), de Paul W.S. Anderson.
- Sphère (1998), de Barry Levinson.
- The Void (en) (2001), de Gilbert M. Shilton.
- Donnie Darko (2001), de Richard Kelly.
- Contact (1997), de Robert Zemeckis, où il est fait mention d'un pont Einstein-Rosen.
- Dans la mythologie de La Guerre des étoiles, Evona, l’un des deux soleils du système dont est originaire le peuple des Hutt a été englouti par un trou noir.
- Dans une Galaxie près de chez vous 2 (Le Film) Le Zipper
Dans la littérature
- L’essai Eureka écrit en 1848 par Edgar Allan Poe qui inclut une intuition cosmologique qui anticipe les trous noirs et la théorie du Big Bang.
- Les Cantos d'Hypérion, de Dan Simmons.
- Contact, de Carl Sagan, adapté au cinéma (voir Contact).
- La Grande Porte, de Frederik Pohl.
- Une singularité nue et ses effets non déterministes sont à la base du livre Radix, de l’auteur américain Alfred Angelo Attanasio, paru en 1981.
- Dans les romans Ilium et Olympos de Dan Simmons, des trous de ver entre trous noirs branaires (brane holes) sont utilisés comme moyen de transport par les Moravecs pour se déplacer à travers le système solaire.
- Le roman de l’auteur américain John Varley, Le Canal Ophite parle de « chasseurs de trous noirs ».
Dans les séries télévisées
- Andromeda, le protagoniste et son vaisseau (Andromeda) sont happés par un trou noir et y sont prisonniers dans le temps pendant 300 ans.
- Babylon 5, le voyage spatial est rendu possible par des zones de singularité créées artificiellement.
- Sliders, les héros glissent de monde en monde grâce à un pont d’Einstein-Rosen.
- Stargate SG-1 : dans quelques épisodes [46] un trou noir est mis en scène.
- Battlestar Galactica [47].
En musique
- La chanson Cygnus X-1 de l’album A Farewell to Kings (1977) par le groupe Rush
- La chanson Black Holes de l’album Great White North (1981) par Bob & Doug MacKenzie
- La chanson Supermassive Black hole de l'album Black Holes and Revelations (2006) par le groupe Muse
- La chanson Black Hole Sun de l'album Superunknown (1994) par le groupe Soundgarden
- La chanson "Kids of the Black Holes" du groupe Thrice
- La chanson "Beyond The Black Hole" du groupe Gamma Ray
En bande dessinée
- Le comics Warheads (édité par Marvel UK) décrit les aventures de mercenaires se servant de trous noirs pour se déplacer à travers l’espace.
- Dans la bande dessinée Lobo/The Mask (édité par DC Comics et Dark Horse), l'aventure réunit les deux héros dans une chasse contre un monstre ayant détruit plusieurs galaxies. On y retrouve un bar improvisé sur un morceau de météorite flottant près d'un trou noir. Lobo, s'étant emparé du Masque, se transporte dans le passé grâce à un trou de ver. Il devient ainsi le monstre à la poursuite duquel il s'était lancé.
- Dans la bande dessinée Universal War One, un trou de ver est au cœur de l'intrigue.
Dans le domaine du jeu vidéo
- Outcast où la Terre est menacée d’être engloutie par un trou noir, après un accident.
- Star Fox, notamment le premier jeu de la série (Star Wing) ou l’Arwing peut voyager d'une partie de l'espace à une autre grâce à un trou noir.
- Super Mario Galaxy où Mario ne doit jamais tomber dans le vide de l'espace sous peine d'être aspiré par un trou noir.
- Ratchet and Clank 3 où le héros peut disposer à un moment du jeu d'un Pistolet lanceur de trous noirs nommé le Fissurateur, aspirant tous les enemis s'en approchant les réduisant à néant.
- Spore où l'on peut aller à un autre bout de la galaxie en passant par un trou de ver.
Notes et références
- ↑ On parle ici de trou noir de Schwarzschild.
- ↑ (de) Karl Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 1, 189-196 (1916).
- ↑ Parmi les premières observations de Cygnus X-1 par Uhuru, on retiendra : (en) M. Oda et al., X-Ray Pulsations from Cygnus X-1 Observed from UHURU, Astrophysical Journal Letters, 166, L1-L7 (1971) Voir en ligne.
- ↑ Les premières indications que Cygnus X-1 est un trou noir, à partir des observations de Uhuru, sont publiées dans (en) D. M. Eardley & William H. Press, Astrophysical processes near black holes, Annual Review of Astronomy and Astrophysics, 13, 381-422 (1975) Voir en ligne.
- ↑ Kip S. Thorne, Trous noirs et distorsions du temps cité en bibliographie.
- ↑ a et b La relativité générale est une théorie relativiste de la gravitation mais qui ne peut prendre en compte les effets de mécanique quantique. Or une singularité gravitationnelle est une région dans laquelle ces effets quantiques jouent un rôle prépondérant.
- ↑ Le satellite Gravity Probe B, lancé en 2004, a notamment pour mission de mettre en évidence cet effet.
- ↑ Voir par exemple le livre de Robert M. Wald cité en bibliographie.
- ↑ Par exemple, l’entropie des trous noirs n’a à l’heure actuelle d’interprétation microscopique que pour certains types de trous noirs dans des espace-temps à cinq dimensions.
- ↑ (en) John Michell, dans une lettre à Henry Cavendish, On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose., Philosophical Transactions of the Royal Society of London, 74, 35-57 (1784) Voir en ligne. Voir aussi Historique des trous noirs.
- ↑ Il est donc faux de dire, comme on le voit souvent, que le mouvement de l’objet tombant sur le trou noir se « gèle », ou s’arrête. En pratique il est devenu invisible avant de s’arrêter complètement.
- ↑ Voir Force de marée#Cas des trous noirs pour les détails.
- ↑ Contrairement à une idée reçue répandue. Cependant, si l'interaction forte était moins intense, alors la pression de dégénérescence des nucléons pourrait éventuellement assurer l'équilibre de l'étoile. On pourra consulter avec profit ce polycopié pour plus de détails.
- ↑ Une naine blanche est principalement composée d'hélium de carbone et d'oxygène, qui peuvent effectivement fusionner en des éléments plus lourds.
- ↑ Selon la masse de l'étoile progénitrice, son cœur va s'effondrer en étoile à neutrons (masse de l'étoile plus faible), soit en trou noir (masse plus élevée).
- ↑ (en) Charles Alcock, Edward Fahri & Angela Olinto, Strange stars, Astrophysical Journal, 310, 261-272 (1986) Résumé disponible sur ADS : 1986ApJ...310..261A.
- ↑ Voir par exemple (en) Jeremy J. Drake et al., Is RX J185635-375 a Quark Star?, Astrophysical Journal, 572, 996-1001 (2002), Article disponible sur arXiv : astro-ph/0204159. (en).
- ↑ (en) Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours (communiqué de presse ESO, 16 octobre 2002).
- ↑ Voir le site Galactic Center Research at MPE du Max-Planck-Institut für extraterrestrische Physik et en particulier l’animation montrant la trajectoire de l’étoile S2. Voir également R. Schödel et al., Closest Star Seen Orbiting the Supermassive Black Hole at the Centre of the Milky Way, Nature (journal), 419, 694 (17 octobre 2002), Article disponible sur arXiv : astro-ph/0210426. (en)
- ↑ (en) Volonteri M., Rees M. J., Rapid Growth of High-Redshift Black Holes, (2005), ApJ, 633, 624 Article disponible sur arXiv : astro-ph/0506040. (en)
- ↑ (en) Voir aussi l'article sur le site de Universe Today.
- ↑ (en) Voir la revue de M. C. Miller et E. J. M. Colbert. Article disponible sur arXiv : astro-ph/0308402. (en)
- ↑ (en) J. R. Sánchez Sutil, A catalogue of ultra-luminous X-ray source coincidences with FIRST radio sources], Astronomy and Astrophysics, vol. 452, t. 2, juin 2006, pp. 739-742. Résumé disponible sur ADS : 2006A%26A...452..739S
- ↑ (en) Voir l’article du Scientific American Magazine (no de mai 2005), intitulé « Quantum Black Holes ».
- ↑ On parle ici principalement de GRB « longs », formés par les étoiles massives. La deuxième classe de GRB, les « courts », sont considérés comme le résultat de la fusion de deux étoiles à neutrons, ce qui donne aussi un trou noir… Mais leur compréhension est plus difficile que les GRB longs. Car le phénomène de coalescence de deux objets très compacts nécessite l’utilisation de simulations numériques extrêmement complexes. Comparativement, l’explosion d’une étoile massive est plus simple.
- ↑ (en) T. P. Krichbaum et al., Towards the Event Horizon - The Vicinity of AGN at Micro-Arcsecond Resolution, comptes rendus du 7e symposium européen sur les réseaux VLBI (Tolède, Espagne, 12-15 octobre 2004). Article disponible sur arXiv : astro-ph/0411487. (en).
- ↑ (en) M. Miyoshi et al., An approach Detecting the Event Horizon of SGR A*, ibid.. Article disponible sur arXiv : astro-ph/0412289. (en).
- ↑ (en) Voir J.-P. Maillard et al., The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared, Astronomy and Astrophysics, 423, 155-167, 2004, Article disponible sur arXiv : astro-ph/0404450. (en)
- ↑ (en) Roger W. Romani et al., Q0906+6930: The Highest-Redshift Blazar, Astrophysical Journal, 610, L9-L12 (2004), Article disponible sur arXiv : astro-ph/0406252. (en)
- ↑ L’élaboration d’une théorie de la gravité quantique est la condition de résolution de ce problème.
- ↑ Ce résultat peut s'interpréter autrement dans le cadre de la thermodynamique des trous noirs : dans ce cadre, il est équivalent avec le troisième principe de la thermodynamique qui indique l'inaccessibilité du zéro absolu par un nombre fini de transformations thermodynamiques.
- ↑ Elle est égale au quart de la surface de l’horizon en unités de Planck, c’est-à-dire dans un système d’unités où la vitesse de la lumière c, la constante de Newton G, la constante de Planck réduite et la constante de Boltzmann kB sont toutes égales à 1. Voir l’article entropie des trous noirs pour plus de détails.
- ↑ (en) Raphael Bousso The holographic principle, Reviews of Modern Physics, 74 825-874 (2002)
- ↑ (en) Parthasarathi Majumdar, Black Hole Entropy and Quantum Gravity. Talk given at the National Symposium on Trends and Perspectives in Theoretical Physics, Calcutta, India, Apr 1998. Article disponible sur arXiv : gr-qc/9807045. (en)
- ↑ S. W. Hawking, Particle creation by black holes, Commun. Math. Phys., 43, 199-220 (1975) Voir en ligne, Erratum, ibid, 46, 206-206 (1976).
- ↑ En termes d’ordre de grandeur, la température d’un trou noir en unités de Planck correspond à l’inverse de sa taille en unités de Planck. Pour un trou noir stellaire, sa taille se compte en kilomètres, soit 1038 fois la longueur de Planck. Sa température est donc de l’ordre de 10-38 fois la température de Planck, qui vaut dans les 1032 kelvins. La température d’un trou noir stellaire est donc de l’ordre de 10-6 kelvins.
- ↑ Voir par exemple Azar Khalatbari, Trous noirs primordiaux : Les poids plume disparus, Ciel & Espace, juin 2002 Voir en ligne.
- ↑ (en) Black holes and the information paradox. Prepared for GR17: 17th International Conference on General Relativity and Gravitation, Dublin, Irlande, 18-24 juillet 2004
- ↑ (en) Voir l’article (payant) du magazine anglais Nature, intitulé « Hawking changes his mind about black holes » (« Hawking a changé d’avis sur les trous noirs »).
- ↑ Voir aussi l’article sur le site space.com.
- ↑ (en) This Week’s Finds in Mathematical Physics (Week 207), entrée dans le blog de John Baez consacrée à la conférence GR17 de Dublin 2004.
- ↑ (en) S. Hawking, Information Loss in Black Holes, Physical Review D, 72, 084013 (2005) Article disponible sur arXiv : hep-th/0507171. (en)
- ↑ (en)Article du blog de Lubos Motl consacré à la résolution d’Hawking du paradoxe de l’information pour les trous noirs.
- ↑ (en) Citations scientifiques de l’article de Hawking d’après la base de données SPIRES.
- ↑ Voir livre de Robert M. Wald dans la section bibliographie, page 156.
- ↑ l’épisode 16 de la saison 2, l’épisode 6 de la saison 9 et l'épisode 3 de la saison 10
- ↑ Le dernier épisode de cette série
Annexes
Articles connexes
- Articles connexes
- Sur les trous noirs astrophysiques
- Sur les quatre types de trous noirs théoriques
- Objets théoriques
- Physiciens impliqués dans l’étude des trous noirs
- Référence en fiction
Liens externes
- (fr) Trou noir, dossier introductif par futura-sciences.com
- (fr) Recherche de nouvelle physique avec les micro trous noirs A. Barrau & J. Grain, CERN.
- (fr) Les trous noirs
- (en) Foire aux questions sur les trous noirs, par Ted Bunn astrophysicien à l’Université de Californie à Berkeley
- (en) Black Holes: Gravity’s Relentless Pull Site web multi-média du Space Telescope Science Institute à propos de la physique des trous noirs.
- (en) Projet étudiant, avec une section « enfant »
- (en) Article sur les candidats trous noirs, avec un film de l’orbite des étoiles les plus proches du centre de notre Galaxie, de l’Institut Max Planck
- (en) Actualités de la recherche sur les trous noirs sur le site de ScienceDaily
- (en) Scientific American Magazine (no de juillet 2003) The Galactic Odd Couple - giant black holes and stellar baby booms
- (en) Animation en anglais sur les trous noirs, les supernovae et les naines blanches
Bibliographie
- Ouvrages de vulgarisation
- (fr) Kip S. Thorne, Trous noirs et distorsions du temps : l'héritage sulfureux d'Einstein, Champs Flammarion, 1994. (ISBN 9782082112215)
Un classique mêlant les aspects historiques et techniques du sujet. Très complet.
- (fr) Jean-Pierre Luminet, Les trous noirs, Points, coll. Sciences, 1992. (ISBN 9782020159487)
Même s’il date un peu, excellent livre pour s’informer, de la part d’un spécialiste reconnu mondialement.
- (fr) Jean-Pierre Luminet, Le destin de l’univers — Trous noirs et énergie sombre, Fayard, coll. Le temps des sciences, 2006. (ISBN 9782213630816)
Réactualisation du précédent.
- (fr) Stephen Hawking, Roger Penrose, La nature de l’espace et du temps, Folio essais, 1996. (ISBN 9782070744657)
- (fr) Isaac Asimov, Trous noirs — l’explication scientifique de l’univers en contraction, éd. L’étincelle, 1978.
Livre rare difficile à trouver.
- (fr) Stephen Hawking, Une brève histoire du temps, (1999) (ISBN 9782080812384)
Un best-seller très intéressant, et où les trous noirs et les interrogations qu’ils posent sont mis dans le vaste contexte de l’univers et de son évolution.
- (en) Jacob Bekenstein, Of Gravity. Black Holes and Information, Di Renzo Editore, 2006, (ISBN 8883231619).
- (fr) Kip S. Thorne, Trous noirs et distorsions du temps : l'héritage sulfureux d'Einstein, Champs Flammarion, 1994. (ISBN 9782082112215)
- Articles de magazines
- (fr) Les trous noirs, dossier Hors Série du magazine « Pour la Science », 1997 (ISSN 01534092).
Épuisé sur le site de la revue, mais apparemment disponible sur CD.
- (fr) Aurélien Barrau et Gaëlle Boudoul, Où sont passés les trous noirs primordiaux, article du magazine « La recherche », 2004
- (fr) A.Barrau, A.Gorecki, J.Grain , Les micro-trous noirs primordiaux, Pour la Science n°372, octobre 2008.
- (fr) J. Lavalle , Les trous noirs de masse intermédiaire, Pour la Science n°372, octobre 2008.
- (fr) A. Riazuelo, Trous noirs et trous de vers, Pour la Science n°372, octobre 2008.
- (fr) Les trous noirs, dossier Hors Série du magazine « Pour la Science », 1997 (ISSN 01534092).
- Ouvrages et articles techniques
- (en) Edwin F. Taylor & John A. Wheeler, Exploring black holes: introduction to general relativity, Benjammin/Cummings (2000) (ISBN 020138423X).
Pour un lecteur qui connaît les principes de la relativité restreinte, Wheeler et Taylor introduisent les idées de la relativité générale à partir du concept de trou noir, en utilisant le minimum de mathématiques possible : métriques, algèbre, calcul différentiel et intégral de base (pas de géométrie différentielle, ni de tenseurs). Accessible dès le niveau premier cycle universitaire.
- (en) Subrahmanyan Chandrasekhar, The mathematical theory of black holes, Oxford University Press (1983) (ISBN 0198503709).
La théorie mathématique des trous noirs, par le grand astrophysicien théoricien d’origine indienne. Niveau troisième cycle universitaire.
- (en) Kip Thorne, Richard H. Price & Douglas Alan Macdonald, Black holes: the membrane paradigm, Yale University Press, New Heaven (1986) (ISBN 0300037694)
- (en) Stuart Louis Shapiro & Saul Arno Teukolsky, Black holes, white dwarfs and neutron stars: the physics of compact objects, John Wiley, New York (1983). (ISBN 978-0-471-87316-7)
- (en) Robert M. Wald, General Relativity, University of Chicago Press, 1984, 498 pages (ISBN 0226870332).
- (en) D. Kramer, Hans Stephani, Malcolm Mac Callum & E. Herlt, Exact solutions of Einstein's field equations, Cambridge University Press, Cambridge, Angleterre, 1980, 428 pages (ISBN 0521230411).
- (en) Edwin F. Taylor & John A. Wheeler, Exploring black holes: introduction to general relativity, Benjammin/Cummings (2000) (ISBN 020138423X).
- Aspects historiques
- (en) Brandon Carter ; Half century of black-hole theory: from physicists’ purgatory to mathematicians’ paradise, dans : L. Mornas (ed.) ; « Encuentros Relativistas Espanoles: A Century of Relativity Theory », Oviedo (2005).
Texte complet disponible sur arXiv : gr-qc/0604064
- (en) Brandon Carter ; Half century of black-hole theory: from physicists’ purgatory to mathematicians’ paradise, dans : L. Mornas (ed.) ; « Encuentros Relativistas Espanoles: A Century of Relativity Theory », Oviedo (2005).
Filmographie
- Alain Riazuelo, Sylvie Rouat & Patrice Desenne, Voyage au cœur d'un trou noir, Sciences et Avenir, 2008, France.
- Portail de l’astronomie
- Portail de la cosmologie
Catégories : Article de qualité | Trou noir
Wikimedia Foundation. 2010.