Astrophysique

Astrophysique
Les Pléiades sont un amas ouvert détoiles jeunes situées dans la constellation du Taureau.

Lastrophysique (du grec astro = astre et physiqui = physique) est une branche interdisciplinaire de l'astronomie qui concerne principalement la physique et l'étude des propriétés des objets de l'univers (étoiles, planètes, galaxies, milieu interstellaire par exemple), comme leur luminosité, leur densité, leur température et leur composition chimique.

Actuellement, les astronomes ont une formation en astrophysique et leurs observations sont généralement étudiées dans un contexte astrophysique, de sorte qu'il y a moins de distinction entre ces deux disciplines qu'auparavant.

Sommaire

Disciplines de l'astrophysique

Il existe différentes disciplines en astrophysique :

(Pour la hiérarchie des disciplines scientifiques voir en français la Liste des disciplines scientifiques.)

Lastrophysique étant un sujet très vaste, les astrophysiciens utilisent généralement plusieurs disciplines de la physique, dont la mécanique, lélectromagnétisme, la mécanique statistique, la thermodynamique, la mécanique quantique, la relativité, la physique nucléaire, la physique des particules, la physique atomique et moléculaire.

Historique

Article détaillé : Cosmologiste.
Copernic (1473-1543).

Aussi loin que remontent les données historiques, on trouve des preuves de lexistence de lastronomie. Pendant longtemps, lastronomie était une discipline bien distincte de la physique. Dans la pensée aristotélicienne, le monde céleste tendait à la perfection, avec les corps célestes qui semblaient être des sphères parfaites circulant sur des orbites parfaitement circulaires, alors que le monde terrestre semble condamné à limperfection. Ces deux mondes ne pouvaient donc pas être liés.

Aristarque de Samos (310 av. J.-C. - 250 av. J.-C.) fut le premier à mettre en avant lidée selon laquelle le mouvement des corps célestes pouvait sexpliquer par la rotation des planètes du système solaire (dont la Terre) autour du Soleil. Malheureusement, à lépoque, la vision géocentrique de lunivers prévalait et la théorie héliocentrique dAristarque fut déclarée farfelue et hérétique. Cette vision resta en place jusquà ce quun astronome nommé Nicolas Copernic ressuscita le modèle héliocentrique au XVIe siècle. En 1609, grâce à la lunette astronomique qu'il avait inventé, Galilée découvrit les quatre lunes les plus brillantes de Jupiter, et démontra quelles tournaient toutes autour de cette planète. Cette découverte était en complète contradiction avec le dogme de lÉglise catholique de lépoque. Il néchappa à une peine sévère quen prétendant que son œuvre nétait que pur travail mathématique et donc purement abstrait, contrairement à la philosophie naturelle (la physique).

Newton (1642-1727).

À partir des données précises dobservations (principalement en provenance de lobservatoire de Tycho Brahe), des recherches ont été menées pour trouver une explication théorique au comportement observé. Dans un premier temps, seules des lois empiriques ont été formulées, telles que les lois de Kepler sur le mouvement planétaire au début du XVIIe siècle. Quelques années plus tard, Isaac Newton réussit à faire le lien entre les lois de Kepler et la dynamique de Galilée. Il découvrit en effet que les mêmes lois régissaient la dynamique des objets sur Terre et le mouvement des astres dans le système solaire. La mécanique céleste, application de la gravité newtonienne et des lois de Newton pour expliquer les lois de Kepler sur les mouvements des planètes, fut la première unification de lastronomie et de la physique.

Après quIsaac Newton eut publié son livre, Philosophiae Naturalis Principia Mathematica, la navigation maritime changea radicalement. À partir de 1670, le monde entier était mesuré à partir dinstruments modernes donnant la latitude et dhorloges. Les besoins de la Marine poussaient à lamélioration progressive des instruments et des observations astronomiques, donnant ainsi davantage de données aux scientifiques.

À la fin du XIXe siècle, on découvrit que la lumière du Soleil pouvait se décomposer en un spectre de lignes colorées. Des expériences avec des gaz chauffés montrèrent par la suite que les mêmes lignes étaient présentes dans leur spectre. Ces lignes spécifiques correspondaient à un élément chimique unique. Ceci fut la preuve que les éléments chimiques présents dans le Soleil pouvaient être trouvés sur Terre. En effet, lhélium fut dabord découvert dans le spectre du Soleil, d son nom, et seulement ensuite sur la Terre. Au XXe siècle, la spectroscopie (létude de ces lignes spectrales) se développa, notamment grâce aux avancées de la physique quantique qui pouvait expliquer les observations expérimentales et astronomiques[1].

Physique observationnelle

NGC 4414, une galaxie spirale de la constellation Coma Berenices, de 56 000 années-lumière de diamètre et située à 60 millions d'années-lumière.

La majorité des observations en astrophysique sont effectuées en utilisant le spectre électromagnétique.

  • La radioastronomie étudie les radiations cosmiques qui ont une longueur donde supérieure à quelques millimètres. Les ondes radios sont généralement émises par les objets froids, comme les gaz interstellaires ou les nuages de poussière. La radiation micro-onde du fond diffus cosmologique provient de la lumière du Big Bang qui subit un décalage vers le rouge. Les pulsars ont été détectés en premier par les fréquences micro-ondes. Létude de ces fréquences nécessite de très gros radiotélescopes.
  • Lastronomie infrarouge étudie les radiations dont la longueur donde est trop grande pour être visible et plus petite que les ondes radio. Les observations en infrarouge sont généralement faites avec des télescopes similaires aux télescopes optiques. Les objets astrophysique qui émettent principalement dans l'infrarouge sont, essentiellement, plus froids que des étoiles, comme les planètes ou bien les galaxies infrarouges par exemple.
  • Lastronomie optique est la forme la plus ancienne dastronomie. Les instruments les plus courants sont les télescopes associés à un capteur à charge couplée ou des spectroscopes. Comme latmosphère terrestre interfère quelque peu avec les observations faites, loptique adaptative et les télescopes spatiaux ont fait leur apparition afin dobtenir la meilleure qualité d'image possible. À cette échelle, les étoiles sont très visibles, et beaucoup de spectres chimiques peuvent être observés dans la composition chimique détoiles, de galaxies ou de nébuleuses.
  • Lastronomie dans l'ultraviolet, l'rayons X ou des rayon gamma étudie les phénomènes très énergétiques tels que les pulsars binaires, les trous noirs ou les magnétars. Ces radiations pénètrent difficilement latmosphère de la Terre, il ny a donc que deux possibilités pour les exploiter, les télescopes spatiaux et les télescopes Cherenkov atmosphériques. Le RXTE, le télescope à rayons X Chandra et lobservatoire à rayons gamma Compton sont des observatoires du premier type. Le système stéréoscopique de haute énergie (HESS) et le télescope MAGIC font partie de la deuxième catégorie.

Mis à part les radiations électromagnétiques, seulement très peu de choses situées à grande distance peuvent être observées depuis la Terre. Quelques observatoires dondes gravitationnelles ont été construits mais ces ondes sont très difficiles à détecter. On trouve également quelques observatoires de neutrinos pour létude du Soleil, principalement. Les rayons cosmiques sont des particules de haute énergie qui sont observées lorsqu'elles heurtent latmosphère terrestre.

Les observations diffèrent également sur l'échelle de temps quelles considèrent. La plupart des observations optiques s'étalent sur plusieurs minutes, voire sur plusieurs heures, de sorte que les phénomènes qui évoluent plus rapidement que cet intervalle de temps ne sont pas visibles. Cependant, les données historiques de quelques objets sétendent sur des siècles ou des millénaires. D'autre part, les observations radio se focalisent sur des événements à léchelle de la milliseconde (pulsar milliseconde) ou combine les données de plusieurs années (études de la décélération des pulsars). Les informations obtenues à ces différentes échelles permettent d'accéder à des résultats différents.

Létude de notre propre Soleil tient une place particulière dans lastrophysique observationnelle. Du fait de l'énorme distance à laquelle se trouvent les autres étoiles, les détails que lon peut acquérir sur le Soleil sont sans commune mesure avec ce que lon pourrait observer sur les autres étoiles. La compréhension du Soleil sert ainsi de guide à notre connaissance des autres étoiles.

Lévolution stellaire, le sujet qui étudie comment changent les étoiles, est souvent modélisée en plaçant les différents types détoiles à leur position sur le diagramme de Hertzsprung-Russell. Ce diagramme représente létat dun objet stellaire, de sa naissance à sa disparition. La composition matérielle des objets astronomiques peut souvent être étudiée en utilisant :

Astrophysique théorique

Les astrophysiciens utilisent une grande variété doutils comme les modèles analytiques (tels que les polytropes pour obtenir le comportement approximatif dune étoile) ou la simulation numérique sur ordinateur. Chaque outil a ses avantages. Les modèles analytiques dun processus sont généralement meilleurs pour obtenir le fonctionnement interne. Les modèles numériques, eux, peuvent révéler lexistence de phénomènes et deffets qui ne pourraient être vus autrement[2],[3].

Les théoriciens en astrophysique essayent de créer des modèles théoriques et de comprendre les conséquences observables de ces modèles. Ceci aide les observateurs à rechercher les données qui peuvent réfuter un modèle ou aider dans le choix entre plusieurs alternatives ou modèles contradictoires.

Les théoriciens essayent également de produire ou modifier des modèles pour tenir compte de nouvelles données. En cas de contradiction, la tendance générale est d'essayer de faire des modifications minimes du modèle pour l'adapter aux données. Dans certains cas, une grande quantité de données incohérentes à répétition peut mener à l'abandon total d'un modèle.

Les sujets étudiés par les théoriciens en astrophysique incluent lévolution et la dynamique stellaire, la formation des galaxies, les structures matérielles à grande échelle de lUnivers, lorigine des rayons cosmiques, la relativité générale et la cosmologie physique, avec laide de la théorie des cordes et la physique des particules. Lastrophysique relativiste sert doutil pour évaluer les propriétés des structures à grande échelle. Pour ces structures, la gravitation joue un rôle important dans les phénomènes physiques étudiés et sert de base pour la physique des trous noirs et létude des ondes gravitationnelles.

Parmi les théories étudiées et les modèles reconnus en astrophysique, on peut trouver le modèle lambda-CDM qui inclut le Big Bang, linflation cosmique, la matière noire et les théories fondamentales de la physique.

Quelques exemples de processus :

Processus Physique Outil Expérimental Modèle Théorique Explique / Prédit
Gravitation Radiotélescopes Effet Nordtvedt Émergence d'un système planétaire
Fusion nucléaire Spectroscopie Évolution des étoiles Comment brillent les étoiles et comment se forment les métaux
Big Bang Télescope spatial Hubble, COBE Expansion de l'Univers Âge de l'Univers
Fluctuations quantiques Inflation cosmique Problème de planéité
Effondrement gravitationnel Astronomie des rayons X Relativité générale Trous noirs au centre de la galaxie d'Andromède
Cycle carbone-azote-oxygène des étoiles

L'énergie sombre et la matière noire sont actuellement les principaux sujets de recherche en astrophysique, étant donnée que leur découverte et la controverse sur leur existence est issue de l'étude des galaxies.

Notes et références

  1. Frontiers of Astrophysics : Workshop Summary, H. Falcke, P. L. Biermann
  2. H. Roth, A Slowly Contracting or Expanding Fluid Sphere and its Stability, Phys. Rev. (39, p;525529, 1932)
  3. A.S. Eddington, Internal Constitution of the Stars

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Astrophysique de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • astrophysique — [ astrofizik ] n. f. • 1903; de astro et physique ♦ Branche de l astronomie qui étudie la nature physique, la formation et l évolution des corps célestes. Astrophysique expérimentale, qui étudie le rayonnement des astres par les méthodes… …   Encyclopédie Universelle

  • astrophysique — astrofizika statusas T sritis fizika atitikmenys: angl. astrophysics vok. Astrophysik, f rus. астрофизика, f pranc. astrophysique, f; physique astronomique, f …   Fizikos terminų žodynas

  • Astrophysique Théorique — L astrophysique théorique est une discipline qui cherche à expliquer les phénomènes observés par les astronomes en des termes physiques avec une approche théorique. Dans ce but, les astrophysiciens théoriciens créent et font évoluer des modèles… …   Wikipédia en Français

  • Astrophysique theorique — Astrophysique théorique L astrophysique théorique est une discipline qui cherche à expliquer les phénomènes observés par les astronomes en des termes physiques avec une approche théorique. Dans ce but, les astrophysiciens théoriciens créent et… …   Wikipédia en Français

  • Astrophysique Des Hautes Énergies — L’astrophysique des hautes énergies est la science qui étudie les objets astrophysiques tels que les trous noirs, naines blanches, pulsars, novae, quasars, microquasars, galaxies de Seyfert, sursauts gamma... Ces objets sont le lieu de phénomènes …   Wikipédia en Français

  • Astrophysique des hautes energies — Astrophysique des hautes énergies L’astrophysique des hautes énergies est la science qui étudie les objets astrophysiques tels que les trous noirs, naines blanches, pulsars, novae, quasars, microquasars, galaxies de Seyfert, sursauts gamma... Ces …   Wikipédia en Français

  • Astrophysique théorique — L astrophysique théorique est une discipline qui cherche à expliquer les phénomènes observés par les astronomes en des termes physiques avec une approche théorique. Dans ce but, les astrophysiciens théoriciens créent et font évoluer des modèles… …   Wikipédia en Français

  • Astrophysique des hautes énergies — L’astrophysique des hautes énergies est la science qui étudie les objets astrophysiques tels que les trous noirs, naines blanches, pulsars, novae, quasars, microquasars, galaxies de Seyfert, sursauts gamma... Ces objets sont le lieu de phénomènes …   Wikipédia en Français

  • Institut D'astrophysique De Paris — Pour les articles homonymes, voir IAP. L Institut d astrophysique de Paris (ou IAP), est un laboratoire de recherche du centre national de la recherche scientifique (CNRS), rattaché à l Université Pierre et Marie Curie depuis 2001. Il est situé… …   Wikipédia en Français

  • Institut d'Astrophysique de Paris — Pour les articles homonymes, voir IAP. L Institut d astrophysique de Paris (ou IAP), est un laboratoire de recherche du centre national de la recherche scientifique (CNRS), rattaché à l Université Pierre et Marie Curie depuis 2001. Il est situé… …   Wikipédia en Français

Share the article and excerpts

Direct link
https://fr-academic.com/dic.nsf/frwiki/148791 Do a right-click on the link above
and select “Copy Link”