Espace vectoriel topologique

Espace vectoriel topologique

Les espaces vectoriels topologiques sont une des structures de base de l'analyse fonctionnelle. Ce sont des espaces munis d'une structure topologique associée à une structure d'espace vectoriel, avec des relations de compatibilité entre les deux structures.

Les exemples les plus simples d'espaces vectoriels topologiques sont les espaces vectoriels normés, parmi lesquels figurent les espaces de Banach, en particulier les espaces de Hilbert.

Sommaire

Définition

Un espace vectoriel topologique (« e.v.t. ») E est un espace vectoriel sur un corps topologique K (généralement R ou C muni de leur topologie habituelle) muni d'une topologie compatible avec la structure d'espace vectoriel, c’est-à-dire vérifiant les conditions suivantes :

  • La somme de deux vecteurs est une application continue de E x E dans E,
  • Le produit d'un scalaire par un vecteur est une application continue de K x E dans E.

La catégorie des espaces vectoriels topologiques sur un corps topologique K est notée TVSK ou TVectK où les objets sont les K-espaces vectoriels topologiques et les morphismes sont les applications K-linéaires continues.

Propriétés

  • Un e.v.t. E est en particulier un groupe topologique (pour l'addition). On en déduit deux critères de séparation : E est séparé si et seulement si le singleton réduit au vecteur nul 0 est fermé. Également, E est séparé si et seulement si l'intersection des voisinages de 0 est réduite à {0}.
  • Toute translation (par un vecteur quelconque de E) est un homéomorphisme de E dans E :

la translation par x est continue, comme composée de l'addition par l'application qui à y associe (x,y), et sa réciproque est la translation par -x.

  • Toute homothétie de rapport non nul est aussi un homéomorphisme de E dans lui-même :

l'homothétie de rapport k est continue, comme composée de la loi externe par l'application qui à y associe (k,y), et sa réciproque est l'homothétie de rapport 1/k.

  • Toute application linéaire d'un e.v.t. E dans un e.v.t. F qui est continue au point 0E est uniformément continue sur E.

Espace quotient

Soit F un sous espace vectoriel d'un e.v.t. E, l'espace vectoriel quotient hérite d'une topologie quotient : soit φ la projection canonique de E sur E/F, par définition la topologie induite sur le quotient E/F est la plus fine qui rende φ continue. Les ouverts sont toutes les parties de E/F dont l'image réciproque par φ est ouverte.

  • Remarquons que φ est ainsi non seulement continue, mais ouverte, c'est-à-dire que l'image V par φ de tout ouvert U de E est un ouvert de E/F .

En effet, φ-1(V) est un ouvert de E, comme réunion des ensembles U+x quand x parcourt F, qui sont ouverts (car images de l'ouvert U par des translations).

  • E/F devient ainsi un e.v.t., c'est-à-dire que sa topologie quotient est compatible avec sa structure d'espace vectoriel quotient.

En effet, soit W un ouvert de E/F, montrons que l'ensemble V=+-1(W) est un ouvert de E/FxE/F, où + désigne l'addition dans E/F (+ désignant celle dans E). D'après la remarque précédente (et par définition de la topologie produit), il suffit de vérifier que V=(φ×φ)(U) pour un certain ouvert U de ExE. Le candidat tout désigné est l'ouvert U=(φ ∘ +)-1(W) qui (par définition de la structure d'espace vectoriel quotient) est aussi égal à (+∘(φ×φ))-1(W)=(φ×φ)-1(V). Par surjectivité de φ on a donc bien (φ×φ)(U)=V, ce qui conclut. Le raisonnement pour la multiplication externe est analogue.

  • La topologie de E/F est séparée si et seulement si F est fermé.

En effet, le sous-espace nul de E/F est fermé si et seulement si F est fermé dans E (par passage aux complémentaires et définition de la topologie quotient).

Voisinages de l'origine

Dans toute cette section, le corps topologique K est un « corps valué » (au sens : muni d'une valeur absolue) non discret (par exemple K=R ou C), et E est un e.v.t. sur K.

Ensemble absorbant

Une partie U de E est dite absorbante si :

\forall v \in E \quad \exists \alpha\in\R_+^*\quad \forall \lambda \in K \quad |\lambda|\le \alpha \Rightarrow \lambda v \in U
Théorème
Tout voisinage de l'origine est absorbant.
Cela résulte de la continuité en 0 de l'application de K dans E : λ↦λv.

Ensemble symétrique

Une partie U de E est dite symétrique si :

\forall v \in U \quad -v\in U.

Noyau équilibré d'une partie

Une partie U de E est dite équilibrée si :

\forall \lambda \in K \quad \forall v \in U\quad |\lambda|\le 1 \Rightarrow \lambda v \in U

Le noyau équilibré N d'une partie A de E est la réunion des parties équilibrées de E incluses dans A. C'est un ensemble équilibré car toute réunion d'ensembles équilibrés est équilibrée. Le noyau de A est donc le plus grand ensemble équilibré inclus dans A.

Ce noyau N est non vide si et seulement si A contient le vecteur nul. Dans ce cas, N contient lui aussi le vecteur nul.

Proposition
Soient N le noyau équilibré d'une partie A de E, et v un vecteur de E. Pour que v appartienne à N, il faut et il suffit que pour tout scalaire λ vérifiant |λ|≤1 on ait λvA.
En effet, v appartient à N si et seulement si, parmi les parties équilibrées contenant v, au moins l'une d'entre elles est incluse dans A, ou encore si la plus petite d'entre elles, {λv ; |λ|≤1}, est incluse dans A.
Proposition
Le noyau équilibré de tout voisinage de 0 est un voisinage de 0.

Plus précisément,

tout ouvert contenant le vecteur nul contient un ouvert équilibré contenant le vecteur nul.

En effet, soit O un ouvert contenant le vecteur nul. La multiplication externe étant continue, donc continue au point (0K,0E), il existe un réel α > 0 et un ouvert W contenant le vecteur nul tels que :

|\lambda | < \alpha \; \text {et} \; y \in W \Rightarrow \lambda y \in O.

L'ensemble Ω, défini comme suit, est alors un ouvert équilibré inclus dans O :

\Omega = \bigcup_{0<|\lambda | < \alpha} \lambda W.

De plus cette réunion est non vide (et contient 0) car K est non discret.

Types d'espaces vectoriels topologiques

Suivant l'application qu'on en fait, on utilise généralement des contraintes supplémentaires sur la structure topologique de l'espace. Ci-dessous se trouvent quelques types particuliers d'espaces topologiques, à peu près classés selon leur « gentillesse ».

Références

Articles connexes

Espace de BaireEspace préhilbertien


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Espace vectoriel topologique de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Espace Vectoriel Topologique — Les espaces vectoriels topologiques sont une des structures de base de l analyse fonctionnelle. Ce sont des espaces munis d une structure topologique associée à une structure d espace vectoriel. Des exemples connus d espaces vectoriels… …   Wikipédia en Français

  • Espace Vectoriel Topologique Localement Convexe — Espace localement convexe Sommaire 1 Définition 2 Critère de séparation 3 Continuité d une fonction 4 Espace métrisable …   Wikipédia en Français

  • Espace vectoriel topologique localement convexe — Espace localement convexe Sommaire 1 Définition 2 Critère de séparation 3 Continuité d une fonction 4 Espace métrisable …   Wikipédia en Français

  • Espace vectoriel topologique localement convexe séparé — Espace localement convexe Sommaire 1 Définition 2 Critère de séparation 3 Continuité d une fonction 4 Espace métrisable …   Wikipédia en Français

  • Partie bornée d'un espace vectoriel topologique — Pour les articles homonymes, voir Partie bornée. En analyse fonctionnelle et dans des domaines mathématiques reliés, une partie d un espace vectoriel topologique est dite bornée si tout voisinage du vecteur nul peut être dilaté de manière à… …   Wikipédia en Français

  • Espace Vectoriel — En algèbre linéaire, un espace vectoriel est une structure algébrique permettant en pratique d effectuer des combinaisons linéaires. Étant donné un corps (commutatif) K, un espace vectoriel E sur K est un groupe commutatif (dont la loi est notée… …   Wikipédia en Français

  • Espace vectoriel linéaire — Espace vectoriel En algèbre linéaire, un espace vectoriel est une structure algébrique permettant en pratique d effectuer des combinaisons linéaires. Étant donné un corps (commutatif) K, un espace vectoriel E sur K est un groupe commutatif (dont… …   Wikipédia en Français

  • Espace Vectoriel Normé — Un espace vectoriel normé est une structure mathématique qui développe des propriétés géométriques de distance compatible avec les opérations de l algèbre linéaire. Développée notamment par David Hilbert et Stefan Banach, cette notion est très… …   Wikipédia en Français

  • Espace vectoriel norme — Espace vectoriel normé Un espace vectoriel normé est une structure mathématique qui développe des propriétés géométriques de distance compatible avec les opérations de l algèbre linéaire. Développée notamment par David Hilbert et Stefan Banach,… …   Wikipédia en Français

  • Espace vectoriel normé de dimension finie — Topologie d un espace vectoriel de dimension finie En mathématiques, la topologie d un espace vectoriel de dimension finie correspond à un cas particulier d espace vectoriel normé. Cette configuration se produit si la dimension est finie. Elle… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”