Espace Complet

Espace Complet

Espace complet

En mathématiques, un espace métrique M est dit complet ou espace complet si toute suite de Cauchy de M a une limite dans M (c’est-à-dire qu'elle converge dans M). La propriété de complétude dépend de la distance. Il est donc important de toujours préciser la distance que l'on prend quand on parle d'espace complet.

Intuitivement, un espace est complet s'il « n'a pas de trou », s'il « n'a aucun point manquant ». Par exemple, les nombres rationnels ne forment pas un espace complet, puisque \sqrt{2} n'y figure pas alors qu'il existe une suite de Cauchy de nombres rationnels ayant cette limite. Il est toujours possible de « remplir les trous » amenant ainsi à la complétion d'un espace donné.

La complétude peut aussi être définie pour des espaces uniformes, comme les groupes topologiques.

Sommaire

Exemples

  • Soit l'espace \mathbb Q des nombres rationnels muni de la distance d(x,y) = |x - y|. Cet espace n'est pas complet. En effet, considérons la suite définie par :
x1 = 1 et x_{n+1} = {x_n \over 2} + {1 \over x_n}.
C'est une suite de Cauchy de nombres rationnels mais elle ne converge vers aucune limite appartenant à \mathbb Q. En fait elle converge vers le nombre irrationnel \sqrt{2}.
  • L'intervalle ouvert ]0,1[ muni de la distance d(x,y) = |x - y| n'est pas complet non plus. La suite \left({1\over 2}, {1\over 3}, {1\over 4}, {1\over 5} \ldots\right) est une suite de Cauchy mais elle n'a pas de limite dans l'intervalle.
  • L'ensemble ]0,1[ muni de la distance d(x,y)=\left|\tan \left(\pi x-\pi/2 \right)-\tan \left(\pi y-\pi/2 \right)\right| est complet.
  • L'intervalle réel fermé [0,1] muni de la distance usuelle est complet.
  • Les espaces vectoriels normés peuvent être complets ou pas ; ceux qui le sont sont appelés espaces de Banach. Tous les espaces vectoriels normés de dimension finie sur un corps complet sont complets.
  • L'espace \mathbb Q_p des nombres p-adiques muni de la distance p-adique est complet pour tout nombre premier p. Cet espace complète \mathbb Q avec la métrique p-adique tout comme \R complète \mathbb Q avec la métrique euclidienne.
  • Si S est un ensemble donné, l'ensemble S^{\mathbb N} des suites de S devient un espace métrique complet si on définit la distance entre les suites (x_n)_{n\in\N} et (y_n)_{n\in\N} comme étant égale à 1\over NN est le plus petit indice pour lequel x_N \ne y_N, ou 0 si un tel indice n'existe pas.

Quelques théorèmes

  • Un espace métrique (E,d) est complet si et seulement si l'intersection de toute suite décroissante de fermés bornés non vides Fn dont la suite des diamètres tend vers 0 a une intersection non vide (théorème des complets emboîtés).
  • Un sous-espace d'un espace complet est complet si et seulement s’il est fermé.
  • Si X est un ensemble et M un espace métrique complet, alors l'ensemble B(X,M) des fonctions bornées de X dans M est un espace métrique complet. On définit la distance dans B(X,M) en termes de distance dans M :
d(f,g) := \sup\left\{\,d(f(x),g(x)) : x\in X \,\right\}.
  • Si X est un espace topologique et M un espace métrique complet, alors l'ensemble Cb(X,M) des fonctions continues bornées de X dans M est un sous-espace clos de B(X,M) et donc également complet.
  • Le théorème de Baire montre que tout espace métrique complet est un espace de Baire.
x_0\, quelconque
x_{n+1}=f(x_n)\,
  • Tout produit fini d'espaces métriques complets est complet pour la distance induite.
  • Soit (E,\Vert\cdot\Vert) un espace vectoriel normé. Les propriétés suivantes sont équivalentes:
i) E est complet
ii) toute série normalement convergente d'éléments de E est convergente.

Complété d'un espace métrique

Pour tout espace métrique M, il est possible de construire un espace métrique complet M' (également noté \tilde M ou \hat M) qui contient M comme sous-espace dense. Il possède la propriété suivante : si N est un espace métrique complet quelconque et f est une fonction uniformément continue de M vers N, alors il existe une unique fonction uniformément continue f' de M' vers N qui prolonge f. M' est appelée complété de M.

Le complété de M peut être construit comme l'ensemble des classes d'équivalence des suites de Cauchy de M. Pour deux suites de Cauchy (u_n)_{n\in\N} et (v_n)_{n\in\N} de M, on définit alors la relation :

U\mathcal R V \Leftrightarrow \lim_{n \to \infty} d(u_n,v_n) = 0

d est la distance sur l'ensemble M. Cette relation est bien une relation d'équivalence. On note alors \tilde M son ensemble quotient.

Il s'agit alors de munir \tilde M d'une distance qui le rendra complet. Sur l'ensemble des suites de Cauchy, on définit l'application f qui, à deux suites de Cauchy U = (un) et V = (vn), associe le réel f(U,V) = \lim_{n \to \infty} d(u_n,v_n). Cette relation est bien une application car, les suites U et V étant de Cauchy, on peut prouver que la suite (d(un,vn)) est une suite de Cauchy de \R_+, donc une suite convergente (car \R_+, muni de la distance usuelle, est complet). Cette application vérifie toutes les propriétés d'une distance sauf une : f(U,V) = 0 n'implique pas forcément que U = V.

En revanche, de cette application, on peut induire une application sur l'ensemble quotient \tilde M, application qui, aux classes de U et V, notées \dot U et \dot V, associe d(\dot U,\dot V) = f(U,V). On démontre que cette définition est indépendante des représentants choisis et définit bien une distance sur \tilde M.

L'espace originel est plongé dans le nouvel espace par identification d'un élément x de M à la classe d'équivalence qui contient la suite constante de valeur x.

On démontre alors que l'espace \tilde M, muni de la distance d, est complet et que M est dense dans \tilde M.

La construction des nombres réels est un cas particulier; l'ensemble des nombres réels est le complété de l'ensemble des nombres rationnels, la valeur absolue usuelle étant utilisée comme distance. En utilisant d'autres notions de distance sur les nombres rationnels, on obtient d'autres ensembles, les nombres p-adiques.

Si cette procédure est appliquée à un espace vectoriel normé, on obtient un espace de Banach contenant l'espace original comme sous-espace dense. Appliquée à un espace préhilbertien, on obtient un espace de Hilbert.

Espace topologiquement complet

La complétude est une propriété métrique, mais pas topologique, ce qui signifie qu'un espace métrique complet peut être homéomorphe à un espace qui ne l'est pas. L'ensemble des nombres réels, par exemple, est complet et homéomorphe à l'intervalle ]0,1[ muni de la topologie induite par la topologie usuelle de \mathbb Rqui n'est pas complet.

En topologie, un espace est considéré comme topologiquement complet s'il existe une métrique complète induisant la topologie de cet espace. Un tel espace est également appelé espace polonais.

Un tel espace est un cas particulier d'espace de Baire.

Exemple : c'est le cas de l'ensemble ]0,1[ qui n'est pas complet avec la distance usuelle, mais qui le devient avec la distance d(x,y) = | tan(πx − π / 2) − tan(πy − π / 2) | .

Autre acception du terme

L'épithète "complet" est parfois utilisé dans le sens suivant: un ensemble ordonné est dit complet si toute partie admet une borne supérieure (avec la convention que tout élément majore l'ensemble vide et donc que \sup(\emptyset)=\min(E)). Ceci est équivalent (voir ci-dessous) à ce que toute partie possède une borne inférieure (avec la convention opposée pour l'ensemble vide: \inf(\emptyset)=\max(E)). Par exemple, tout segment est un ensemble ordonné complet. En revanche, \mathbb{R} est complet pour la distance usuelle mais pas en tant qu'ensemble ordonné. Pour éviter toute confusion Bourbaki avait proposé le terme achevé, qui ne s'est pas imposé. Ainsi, \mathbb{R} n'est pas achevé mais \overline{\mathbb{R}}=\mathbb{R} \cup \{-\infty, +\infty\} l'est, d'où son nom de droite réelle achevée. Un autre exemple est l'ensemble P(E) des parties d'un ensemble E avec pour ordre l'inclusion: la borne supérieure est la réunion et la borne inférieure l'intersection.



Par ailleurs, un tel ensemble est un cas particulier de treillis complet. On dispose donc du théorème de Knaster-Tarski : toute application croissante d'un ensemble ordonné achevé dans lui-même possède un point fixe.

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Espace complet ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Espace Complet de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Espace complet — En mathématiques, un espace métrique M est dit complet ou espace complet si toute suite de Cauchy de M a une limite dans M (c’est à dire qu elle converge dans M). La propriété de complétude dépend de la distance. Il est donc important de toujours …   Wikipédia en Français

  • Espace Vectoriel Normé — Un espace vectoriel normé est une structure mathématique qui développe des propriétés géométriques de distance compatible avec les opérations de l algèbre linéaire. Développée notamment par David Hilbert et Stefan Banach, cette notion est très… …   Wikipédia en Français

  • Espace normé — Espace vectoriel normé Un espace vectoriel normé est une structure mathématique qui développe des propriétés géométriques de distance compatible avec les opérations de l algèbre linéaire. Développée notamment par David Hilbert et Stefan Banach,… …   Wikipédia en Français

  • Espace vectoriel norme — Espace vectoriel normé Un espace vectoriel normé est une structure mathématique qui développe des propriétés géométriques de distance compatible avec les opérations de l algèbre linéaire. Développée notamment par David Hilbert et Stefan Banach,… …   Wikipédia en Français

  • Espace Préhilbertien — En mathématiques, un espace préhilbertien est défini comme un espace vectoriel réel ou complexe muni d un produit scalaire. Cette notion généralise celles d espace euclidien ou hermitien, en omettant l hypothèse de la dimension finie. Le cas… …   Wikipédia en Français

  • Espace prehilbertien — Espace préhilbertien En mathématiques, un espace préhilbertien est défini comme un espace vectoriel réel ou complexe muni d un produit scalaire. Cette notion généralise celles d espace euclidien ou hermitien, en omettant l hypothèse de la… …   Wikipédia en Français

  • Espace Euclidien — En mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le… …   Wikipédia en Français

  • Espace euclidien (algèbre linéaire) — Espace euclidien En mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique …   Wikipédia en Français

  • Espace Polonais — Un espace métrisable à base dénombrable (ou séparable, cela revient au même pour un espace métrisable) est un espace polonais si sa topologie peut être définie par une distance qui en fait un espace complet. Tout espace compact métrisable, tout… …   Wikipédia en Français

  • Espace De Banach — Un espace de Banach est un espace vectoriel normé complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”