Epicycloïde

Epicycloïde

Épicycloïde

Construction d'une épicycloïde

Une épicycloïde est une courbe plane transcendante, trajectoire d'un point fixé à un cercle qui roule sans glisser sur un autre cercle dit directeur, les disques ouverts ayant ces deux cercles pour frontière étant disjoints. Il s'agit donc d'un cas particulier de cycloïde à centre, qui est une catégorie de courbe cycloïdale.

Sommaire

Étymologie et histoire

Le mot est une extension de cycloïde, inventé en 1599 par Galilée, et a la même étymologie : il vient du grec epi (sur), kuklos (cercle, roue) et eidos (forme, « semblable à »).

La courbe apparaît pour la première fois durant l'Antiquité : Aristote puis Ptolémée l'utilisent pour décrire le mouvement des planètes dans leur modèle géocentrique, et pour résoudre les problèmes liés aux rebroussements qui apparaissent dans leur trajectoire céleste, que l'on appelle rétrogradation. Cependant, la courbe en elle-même n'est pas évoquée ; elle est seulement une conséquence du mouvement suivant une épicycle tournant autour d'un déférant.

Au cours de ses travaux sur les profils des dents engrenages, Rømer redécouvre l'épicycloïde et la baptise en 1674. Il prouve alors qu'en dessinant les dents d'un engrenage avec des segments d'épicycloïde, deux roues d'engrenages tournent avec une friction minimale. Ces résultats sont confirmés par la suite par Girard Desargues, Philippe de La Hire et Charles Stephen. Le théorème de la double génération de la courbe, quant à lui, est démontré pour la première fois par Daniel Bernoulli en 1725.

Parmi les autres mathématiciens qui se sont intéressés à cette courbe, citons Durer, Huygens, Leibniz, L'Hôpital, Jacques Bernoulli, Euler, Edmond Halley et Isaac Newton, ce dernier ayant traité de la mesure de la longueur de l'épicycloïde dans son Philosophiae Naturalis Principia Mathematica.

Définition mathématique

Une épicycloïde peut être définie par l'équation paramétrique suivante :

x(\theta) = (R+r) \cos \theta - r \cos \left ( \frac{R+r}{r} \times \theta \right ) \,
y(\theta) = (R+r) \sin \theta - r \sin \left ( \frac{R+r}{r} \times \theta \right ) \,

R\, est le rayon du cercle de base et r\, celui du cercle roulant. Avec q={R \over r}, cette équation peut donc également s'écrire :

x(\theta) = r 	\left[(q+1) \cos \theta - \cos ((q+1)\times \theta) \right] \,
y(\theta) = r 	\left[(q+1) \sin \theta - \sin ((q+1)\times \theta) \right]\,

Propriétés

La courbe est formée d'arcs isométriques (appelés arches) séparés par des points de rebroussements. Si q est rationnel (et peut donc s'écrire q=a/b où a et b sont des entiers), a représente le nombre d'arches de la courbe. On peut aussi voir ces deux grandeurs de la manière suivante :

  • a représente le nombre de rotations du cercle roulant nécessaires pour ramener le point mobile à sa position de départ,
  • b représente le nombre de tours du cercle de base nécessaires au cercle roulant pour revenir au point de départ.

Les points de rebroussements sont obtenus pour  \theta = \frac{2k \pi }{q}. La longueur d'une arche est de 8 \frac{q+1}{q^2}R.
Si q est entier, la longueur totale de la courbe vaut {4 \over \pi}\left(1+{1 \over q}\right) fois la longueur du cercle de base, et l'aire totale vaut \left(1+{1 \over q}\right)\left(1+{2 \over q}\right) fois celle du cercle de base.

Le théorème de la double génération prouve qu'une épicycloïde est aussi une péricycloïde de paramètre q'=q/(q+1), c'est-à-dire la courbe décrite par un point d'un cercle de rayon r+R roulant sans glisser sur ce cercle directeur en le contenant.

Comme Ptolémée avant eux, les astronomes rencontrent souvent l'épicycloïde dans leur étude des des mouvements célestes, lorsqu'ils simplifient les orbites ellipsoïdales en orbites circulaires.

Quelques exemples

Epicycloid1a.gif
q = 1 : cardioïde
Epicycloid2.gif
q = 2 : néphroïde
Epicycloid3.gif
q = 3
Epicycloid4.gif
q = 4
Epicycloid5.gif
q = 5
Epicycloid6.gif
q = 1/2
Epicycloid7.gif
q = 3/2
Epicycloid8.gif
q = 5/2
Epicycloid9.gif
q = 7/2
Epicycloid10.gif
q = 9/2
Epicycloid11.gif
q = 1/3
Epicycloid12.gif
q = 2/3
Epicycloid13.gif
q = 4/3
Epicycloid14.gif
q = 5/3
Epicycloid15.gif
q = 7/3
Epicycloid16.gif
q = 1/4
Epicycloid17.gif
q = 3/4
Epicycloid18.gif
q = 5/4
Epicycloid19.gif
q = 7/4
Epicycloid20.gif
q = 9/4
Epicycloid21.gif
q = 1/5
Epicycloid22.gif
q = 2/5
Epicycloid23.gif
q = 3/5
Epicycloid24.gif
q = 4/5
Epicycloid25.gif
q = 6/5

Voir aussi

  • Lorsque le point mobile n'est pas fixé sur le cercle roulant mais à l'extérieur ou à l'intérieur de celui-ci on parle alors d'épitrochoïde, qui est un cas particulier de trochoïde. D'ailleurs, si vous avez cru reconnaître les dessins réalisés avec un spirographe dans les illustrations ci-dessus, vous ne vous êtes pas beaucoup trompé : cet appareil réalise des épitrochoïdes et non des épicycloïdes.
  • Lorsque le cercle mobile tourne à l'intérieur du cercle directeur, la courbe ainsi dessinée s'appelle alors hypocycloïde.

Liens externes

  • Portail de la géométrie Portail de la géométrie
Ce document provient de « %C3%89picyclo%C3%AFde ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Epicycloïde de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Epicycloide — Épicycloïde Construction d une épicycloïde Une épicycloïde est une courbe plane transcendante, trajectoire d un point fixé à un cercle qui roule sans glisser sur un autre cercle dit directeur, les disques ouverts ayant ces deux cercles pour… …   Wikipédia en Français

  • épicycloïde — [ episiklɔid ] n. f. • 1687; de épicycle, d apr. cycloïde ♦ Géom. Courbe engendrée par un point d un cercle qui roule sans glisser sur un autre cercle (⇒ cycloïde). Adj. ÉPICYCLOÏDAL, ALE, AUX , (1741) . ● épicycloïde nom féminin Courbe plane… …   Encyclopédie Universelle

  • Épicycloïde — Construction d une épicycloïde Une épicycloïde est une courbe plane transcendante, trajectoire d un point fixé à un cercle qui roule sans glisser sur un autre cercle dit directeur, les disques ouverts ayant ces deux cercles pour frontière étant… …   Wikipédia en Français

  • épicycloïde — (é pi si klo i d ) s. f. Terme de géométrie. Courbe engendrée par la révolution d un point de la circonférence d un cercle qui roule sur la partie concave ou convexe d un autre cercle. •   Le premier de ces traités est sur les épicycloïdes,… …   Dictionnaire de la Langue Française d'Émile Littré

  • ÉPICYCLOÏDE — s. f. T. de Géom. Courbe engendrée par la révolution d un point de la circonférence d un cercle qui roule sur la partie concave ou convexe d un autre cercle …   Dictionnaire de l'Academie Francaise, 7eme edition (1835)

  • ÉPICYCLOÏDE — n. f. T. de Géométrie Courbe engendrée par la révolution d’un point de la circonférence d’un cercle qui roule sur la partie concave ou convexe d’un autre cercle …   Dictionnaire de l'Academie Francaise, 8eme edition (1935)

  • épicycloïdal — épicycloïde [ episiklɔid ] n. f. • 1687; de épicycle, d apr. cycloïde ♦ Géom. Courbe engendrée par un point d un cercle qui roule sans glisser sur un autre cercle (⇒ cycloïde). Adj. ÉPICYCLOÏDAL, ALE, AUX , (1741) . ● épicycloïdal, épicycloïdale …   Encyclopédie Universelle

  • Cardioide — Cardioïde Construction de la cardioïde La cardioïde est une courbe algébrique plane, trajectoire d un point fixé à un cercle qui roule sans glisser sur un second cercle de même diamètre. Il s agit donc d une courbe cycloïdale dont la directrice… …   Wikipédia en Français

  • Cardioïde — Construction de la cardioïde La cardioïde est une courbe algébrique plane, trajectoire d un point fixé à un cercle qui roule sans glisser sur un second cercle de même diamètre. Il s agit donc d une courbe cycloïdale dont la directrice est un… …   Wikipédia en Français

  • Épitrochoïde — La courbe rouge est une épitrochoïde dessiné grâce à un cercle noir roulant sans glisser autour d un cercle bleu (les paramètres sont R = 3, r = 1 et d = 1/2) Une épitrochoïde est une courbe plane transcendante, correspondant à la trajectoire d… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”