Sédénion

Sédénion

En mathématiques, les sédénions, notés \mathbb S, forment une algèbre à 16 dimensions sur les réels. Leur nom provient du latin sedecim qui veut dire seize. Deux sortes sont actuellement connues :

  1. Les sédénions obtenus par application de la construction de Cayley-Dickson
  2. Les sédénions coniques (ou algèbre M).

Sommaire

Les sédénions de la construction de Cayley-Dickson

Arithmétique

À l'instar des octonions, la multiplication des sedénions n'est ni commutative ni associative. De plus, par rapport aux octonions, les sédénions perdent la propriété d'être alternatifs.

Les sédénions ont un élément neutre multiplicatif 1 et des inverses pour la multiplication, mais ils ne forment pas une algèbre de division. Cela parce qu'ils ont des diviseurs de zéro.

Chaque sedénion est une combinaison linéaire, à coefficients réels, des sédénions unités 1, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14 et e15, qui forment la base de l'espace vectoriel des sédénions. La table de multiplication de ces sédénions unitaires est établie comme suit :

× 1
e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12
e13
e14
e15
1
1
e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12
e13
e14
e15
e1
e1
-1
e3
-e2
e5
-e4
-e7
e6
e9
-e8
-e11
e10
-e13
e12
e15
-e14
e2
e2
-e3
-1
e1
e6
e7
-e4
-e5
e10
e11
-e8
-e9
-e14
-e15
e12
e13
e3
e3
e2
-e1
-1
e7
-e6
e5
-e4
e11
-e10
e9
-e8
-e15
e14
-e13
e12
e4
e4
-e5
-e6
-e7
-1
e1
e2
e3
e12
e13
e14
e15
-e8
-e9
-e10
-e11
e5
e5
e4
-e7
e6
-e1
-1
-e3
e2
e13
-e12
e15
-e14
e9
-e8
e11
-e10
e6
e6
e7
e4
-e5
-e2
e3
-1
-e1
e14
-e15
-e12
e13
e10
-e11
-e8
e9
e7
e7
-e6
e5
e4
-e3
-e2
e1
-1
e15
e14
-e13
-e12
e11
e10
-e9
-e8
e8
e8
-e9
-e10
-e11
-e12
-e13
-e14
-e15
-1
e1
e2
e3
e4
e5
e6
e7
e9
e9
e8
-e11
e10
-e13
e12
e15
-e14
-e1
-1
-e3
e2
-e5
e4
e7
-e6
e10
e10
e11
e8
-e9
-e14
-e15
e12
e13
-e2
e3
-1
-e1
-e6
-e7
e4
e5
e11
e11
-e10
e9
e8
-e15
e14
-e13
e12
-e3
-e2
e1
-1
-e7
e6
-e5
e4
e12
e12
e13
e14
e15
e8
-e9
-e10
-e11
-e4
e5
e6
e7
-1
-e1
-e2
-e3
e13
e13
-e12
e15
-e14
e9
e8
e11
-e10
-e5
-e4
e7
-e6
e1
-1
e3
-e2
e14
e14
-e15
-e12
e13
e10
-e11
e8
e9
-e6
-e7
-e4
e5
e2
-e3
-1
e1
e15
e15
e14
-e13
-e12
e11
e10
-e9
e8
-e7
e6
-e5
-e4
e3
e2
-e1
-1

Les sédénions coniques / algèbre M à 16-dim.

Cette section ne cite pas suffisamment ses sources. Merci d'ajouter en note des références vérifiables ou le modèle {{Référence souhaitée}}.

Arithmétique

À la différence des sédénions issus de la construction de Cayley-Dickson, qui sont construits sur l'unité (1) et 15 racines de l'unité négative (-1), les sédénions coniques sont construits sur 8 racines carrées de l'unité positive et négative. Ils partagent la non commutativité et la non associativité avec l'arithmétique des sédénions de Cayley-Dickson ("sédénions circulaires"), néanmoins les sédénions coniques sont modulaires et alternatifs.

Les sédénions coniques contiennent à la fois les sous-algèbres des octonions circulaires, les octonion coniques et les octonions hyperboliques. Les octonions hyperboliques sont de manière calculatoire équivalents aux octonions déployés.

Les sédénions coniques contiennent des éléments idempotents, nilpotents et donc, des diviseurs de zéro. Avec l'exception de leurs éléments nilpotents et zéro, l'arithmétique est close avec le respect des opérations de puissance et de logarithme.

Bibliographie

  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions, Applied Mathematics and Computation 28:47-72 (1988)
  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions - Further results, Applied Mathematics and Computation, 84:27-47 (1997)
  • Imaeda, K., Imaeda, M.: Sedenions: algebra and analysis, Applied Mathematics and Computation, 115:77-88 (2000)
  • Carmody, Kevin: Circular and Hyperbolic Quaternions, Octonions and Sedenions - Part III, Online at http://www.kevincarmody.com/math/sedenions3.pdf (2006)

Articles connexes



Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Sédénion de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Sedenion — Sédénion En mathématiques, les sédénions, notés , forment une algèbre à 16 dimensions sur les réels. Leur nom provient du latin sedecim qui veut dire seize. Deux sortes sont actuellement connues : Les sédénions obtenus par application de la… …   Wikipédia en Français

  • Sedenion — In abstract algebra, sedenions form a 16 dimensional algebra over the reals. The set of sedenions is denoted as mathbb{S}. Two types are currently known: # Sedenions obtained by applying the Cayley Dickson construction # Conic sedenions ( 16… …   Wikipedia

  • Sedenion — …   Deutsch Wikipedia

  • Hypercomplex number — The term hypercomplex number has been used in mathematics for the elements of algebras that extend or go beyond complex number arithmetic.Hypercomplex numbers have had a long lineage of devotees including Hermann Hankel, Georg Frobenius, Eduard… …   Wikipedia

  • Hypercomplexe — Nombre hypercomplexe En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand… …   Wikipédia en Français

  • Hypercomplexes — Nombre hypercomplexe En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand… …   Wikipédia en Français

  • Nombre Hypercomplexe — En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans… …   Wikipédia en Français

  • Nombre hypercomplexe — En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans… …   Wikipédia en Français

  • Nombres hypercomplexes — Nombre hypercomplexe En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand… …   Wikipédia en Français

  • Alternative algebra — In abstract algebra, an alternative algebra is an algebra in which multiplication need not be associative, only alternative. That is, one must have *x(xy) = (xx)y *(yx)x = y(xx)for all x and y in the algebra. Every associative algebra is… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”