Octonion déployé

Octonion déployé

En mathématiques, les octonions déployés ou octonions fendus sont une extension non associative des quaternions (ou des coquaternions). Ils diffèrent des octonions par la signature de la forme quadratique : les octonions déployés ont une signature mixte (4,4) alors que les octonions ont une signature définie positive (8,0).

Sommaire

Définition

La construction de Cayley-Dickson

Les octonions et les octonions déployés peuvent être obtenus par la construction de Cayley-Dickson (en) en définissant une multiplication sur les paires de quaternions. Nous introduisons une nouvelle unité imaginaire ℓ et nous écrivons une paire de quaternions (a, b) sous la forme a + ℓb. Le produit est défini par la règle suivante :

(a + \ell b)(c + \ell d) = (ac + \lambda d\bar b) + \ell(\bar a d + c b)

\lambda = \ell^2.

Si \lambda\, est choisi égal à - 1, nous obtenons les octonions. Si, à la place, il est choisi égal à + 1, nous obtenons les octonions déployés. On peut aussi obtenir les octonions déployés via un doublement de Cayley-Dickson des coquaternions. Ici, quel que soit le choix de \lambda\, (±1), cela donnera les octonions déployés. Voir aussi les nombres complexes déployés en général.

La table de multiplication

Une base pour les octonions déployés est donnée par l'ensemble {1, i, j, k, ℓ, ℓi, ℓj, ℓk}. Chaque octonion déployé x peut être écrit comme une combinaison linéaire des éléments de la base,

x = x_0 + x_1\,i + x_2\,j + x_3\,k + x_4\,\ell + x_5\,\ell i + x_6\,\ell j + x_7\,\ell k,

avec des coefficients réels xa. Par linéarité, la multiplication des octonions déployés est complètement déterminée par la table de multiplication suivante :

1\, i\, j\, k\, \ell\, \ell i\, \ell j\, \ell k\,
i\, -1\, k\, -j\, -\ell i\, \ell\, -\ell k\, \ell j\,
j\, -k\, -1\, i\, -\ell j\, \ell k\, \ell\, -\ell i\,
k\, j\, -i\, -1\, -\ell k\, -\ell j\, \ell i\, \ell\,
\ell\, \ell i\, \ell j\, \ell k\, 1\, i\, j\, k\,
\ell i\, -\ell\, -\ell k\, \ell j\, -i\, 1\, k\, -j\,
\ell j\, \ell k\, -\ell\, -\ell i\, -j\, -k\, 1\, i\,
\ell k\, -\ell j\, \ell i\, -\ell\, -k\, j\, -i\, 1\,

Le conjugué, la norme et l'inverse

Le conjugué d'un octonion déployé x est donné par

\bar x = x_0 - x_1\,i - x_2\,j - x_3\,k - x_4\,\ell - x_5\,\ell i - x_6\,\ell j - x_7\,\ell k

comme pour les octonions. La forme quadratique (ou norme carrée) sur x est donnée par

N(x) = \bar x x = (x_0^2 + x_1^2 + x_2^2 + x_3^2) - (x_4^2 + x_5^2 + x_6^2 + x_7^2)

Cette norme est la norme pseudo-euclidienne standard sur \mathbb{R}^{4,4}\,. En raison de la signature de fente, la norme N est isotropique, ce qui signifie qu'il existe des éléments x différents de zéro pour lesquels N(x) = 0. Un élément x possède un inverse (à deux faces) x^{-1}\, si et seulement si N(x) ≠ 0. Dans ce cas, l'inverse est donné par

x^{-1} = \frac{\bar x}{N(x)}\,.

Propriétés

Les octonions déployés, comme les octonions, ne sont pas commutatifs ni associatifs. Comme les octonions, aussi, ils forment une algèbre de composition puisque la forme quadratique N est multiplicative. C’est-à-dire,

N(xy) = N(x)N(y)\,.

Les octonions déployés satisfont les identités de Moufang (en) et ainsi forment une algèbre alternative. Par conséquent, par un théorème d'Artin, la sous-algèbre engendrée par deux éléments quelconques est associative. L'ensemble de tous les éléments inversibles (i.e. ces éléments pour lesquels N(x) ≠ 0) forment une boucle de Moufang.

Les octonions hyperboliques

Les octonions déployés sont de manière calculatoire, équivalents aux octonions hyperboliques.

Les octonions déployés en physiques

Les octonions déployés sont utilisés dans la description d'une loi physique, e.g. en théorie des cordes. L'équation de Dirac en physique (l'équation de mouvement d'une particule de spin libre 1/2, comme un électron ou un proton) peut être exprimée avec l'arithmétique des octonions déployés (voir les références ci-dessous).

Algèbre matricielle-vectorielle de Zorn

Puisque les octonions déployés ne sont pas associatifs, ils ne peuvent pas être représentés par les matrices ordinaires (la multiplication matricielle est toujours associative). Zorn a trouvé une manière de les représenter sous la forme de "matrices" contenant à la fois des scalaires et des vecteurs en utilisant une version modifiée de la multiplication matricielle. Plus précisément, définissons qu'une matrice-vecteur est une matrice 2 x 2 de la forme

\begin{bmatrix}a & \mathbf v\\ \mathbf w & b\end{bmatrix}

a et b sont des nombres réels et v et w des vecteurs dans \mathbb{R}^3\,. Définissons la multiplication de ces matrices par la règle suivante

\begin{bmatrix}a & \mathbf v\\ \mathbf w & b\end{bmatrix} \begin{bmatrix}a' & \mathbf v'\\ \mathbf w' & b'\end{bmatrix} = \begin{bmatrix}aa' + \mathbf v\cdot\mathbf w' & a\mathbf v' + b'\mathbf v + \mathbf w \times \mathbf w'\\ a'\mathbf w + b\mathbf w' - \mathbf v\times\mathbf v'  & bb' + \mathbf v'\cdot\mathbf w \end{bmatrix}

où . est le produit scalaire et x le produit vectoriel ordinaire de 3 vecteurs. Avec l'addition et la multiplication scalaire définie comme d'habitude dans l'ensemble de toutes les matrices de cette sorte forme une algèbre à huit dimensions non associative unitaire sur les réels, appelée algèbre matricielle-vectorielle de Zorn.

Définissons le "déterminant" d'un matrice vecteur par la règle

\det\begin{bmatrix}a & \mathbf v\\ \mathbf w & b\end{bmatrix} = ab - \mathbf v\cdot\mathbf w.

Ce déterminant est une forme quadratique de l'algèbre de Zorn qui satisfait la loi de composition :

\det(AB) = \det(A)\det(B)\,.

L'algèbre matricielle-vectorielle de Zorn est, en fait, isomorphe à l'algèbre des octonions déployés. Écrivons un octonion x sous la forme

x = (a + \mathbf a) + \ell(b + \mathbf b)\,

a et b sont des nombres réels, a et b sont des quaternions purs qui sont vus comme des vecteurs dans \mathbb{R}^3\,. L'isomorphisme des octonions déployés vers l'algèbre de Zorn est donné par

x\mapsto \phi(x) = \begin{bmatrix}a + b & \mathbf a + \mathbf b \\ -\mathbf a + \mathbf b & a - b\end{bmatrix}\,.

Cet isomorphisme préserve la norme puisque N(x) = \det(\phi(x))\,.

Références



Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Octonion déployé de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Octonion — En mathématiques, les octonions ou octaves sont une extension non associative des quaternions. Ils forment une algèbre à huit dimensions sur les réels. L’algèbre des octonions est généralement notée . En perdant l’importante propriété… …   Wikipédia en Français

  • Nombre complexe déployé — En mathématiques, les nombres complexes déployés ou fendus sont une extension des nombres réels définis de manière analogue aux nombres complexes (usuels). La différence clef entre les deux est que la multiplication des nombres complexes (usuels) …   Wikipédia en Français

  • Hypernombre — Les hypernombres sont des nombres associés à des dimensions, découverts par le Dr. Charles A. Musès (1919 – 2000). Les hypernombres forment un système complet, cohérent, relié et naturel. Il existe dix niveaux d hypernombres, chacun possède sa… …   Wikipédia en Français

  • Nombre hypercomplexe — En mathématiques, le terme nombre hypercomplexe est utilisé pour désigner les éléments des algèbres qui sont étendues ou qui vont plus loin que l arithmétique des nombres complexes. Les nombres hypercomplexes ont eu un grand nombre de partisans… …   Wikipédia en Français

  • Sédénion — En mathématiques, les sédénions, notés , forment une algèbre à 16 dimensions sur les réels. Leur nom provient du latin sedecim qui veut dire seize. Deux sortes sont actuellement connues : Les sédénions obtenus par application de la… …   Wikipédia en Français

  • Infini — Le symbole infini Le mot « infini » ( e, s ; du latin finitus, « limité »), est un adjectif servant à qualifier quelque chose qui n a pas de limite en nombre ou en taille. Sommaire …   Wikipédia en Français

  • Tessarine — En mathématiques, les tessarines sont une idée introduite par James Cockle en 1848. La notion inclut à la fois les nombres complexes ordinaires et les nombres complexes déployés. Une tessarine t peut être décrite comme une matrice 2 x 2 , où w et …   Wikipédia en Français

  • Arithmétique — L arithmétique est une branche des mathématiques qui comprend la partie de la théorie des nombres qui utilise des méthodes de la géométrie algébrique et de la théorie des groupes. On l appelle plus généralement la « science des… …   Wikipédia en Français

  • Biquaternion — En mathématiques, un biquaternion (ou quaternion complexe) est un élément de l algèbre des quaternions sur les nombres complexes. Le concept d un biquaternion fut mentionné la première fois par William Rowan Hamilton au dix neuvième siècle.… …   Wikipédia en Français

  • Calcul (mathématiques) — Pour les articles homonymes, voir calcul. En mathématiques, un calcul est une opération ou un ensemble d opérations effectuées sur des grandeurs[1]. Initialement ces grandeurs étaient des nombres mais le développement des outils mathématiques et… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”