- Cordiérite
-
Cordiérite[1]
Catégorie IX : silicates[2]
Cordiérite - Italie Général Classe de Strunz 9.CJ.10 Classe de Dana 61.02.01 Formule brute Al3Mg2AlSi5O18 Identification Masse formulaire[3] 584,9529 ± 0,0081 uma
Al 18,45 %, Mg 8,31 %, O 49,23 %, Si 24,01 %,Couleur gris, bleu, bleu noirâtre (Fe), incolore, ou bleu pâle (Mg) Classe cristalline et groupe d'espace dipyramidale ; Cccm Système cristallin orthorhombique, pseudohexagonal Réseau de Bravais centrée P Macle communes sur {110} et {130} Clivage bon selon {100}, peu distinct sur {010} et {001} Cassure subconchoïdale à conchoïdale, irrégulière Échelle de Mohs 7 - 7,5 Trait blanc, gris Éclat vitreux à mat Propriétés optiques Indice de réfraction α=1,527-1,560 β=1,532-1,574 γ=1,538-1,578 Pléochroïsme très marqué Biréfringence Δ=0,011-0,018 ; biaxe négatif Dispersion 2vz ~ 75° - 89° Fluorescence ultraviolet aucune Propriétés chimiques Densité 2,55 - 2,57 Propriétés physiques Magnétisme aucun Radioactivité aucune Unités du SI & CNTP, sauf indication contraire. La cordiérite est une espèce minérale du groupe des silicates sous groupe des cyclosilicates, constituée de silicate de magnésium et d'aluminium, de formule Al3Mg2AlSi5O18 avec des traces de Mn, Fe, Ti, Ca, Na, K. Les cristaux peuvent atteindre jusqu'à 18 cm[4]. Elle a la particularité de présenter un très fort polychroïsme.
Sommaire
Historique de la description et appellations
Inventeur et étymologie
La cordiérite fut décrite par le minéralogiste Lucas en 1813. Elle est dédiée à l'ingénieur, géologue et minéralogiste français Louis Cordier qui en a fait la première description sous le nom de dichroïte ; les échantillons provenaient du Cap de Gattes en Espagne qui n'a pas été retenu comme gisement topotype.
Topotype
Le topotype se trouve à Bodenmais, Bavière, en Allemagne.
Synonymes
- Dichroïte (Cordier, 1809) (genre masculin) : du grec duo, deux, et krôma, couleur, soit double couleur, allusion à son fort pléochroïsme[5].
- Iolite ou yolithe (Werner) du grec iol, violette, pour sa couleur, semblable à la couleur de la violette[6].
- Quartz bleu de la Nouvelle-Finlande (Steinheil)[7].
- Saphir d'eau (Buffon). Ce synonyme historique prête à confusion avec le saphir, point que soulevait déjà Buffon dans sa publication[8]. Il est interdit par le C.I.B.J.O (Word Jewellery Confederation).
- Steinheilite : décrite par le comte de Steinheil, gouverneur de Finlande, sous de nom de quartz bleu de la Nouvelle-Finlande, c'est le minéralogiste Pansner qui l'a baptisée Steinheilite dans l'Annuaire minéralogique de Léonhard en 1815[9].
Caractéristiques physico-chimiques
Critères de détermination
La cordiérite est d'éclat vitreux à mat et de couleur bleue, avec un trichroïsme bleu, jaune, violet. Elle présente une fracture irrégulière et subconchoïdale à conchoïdale.
Elle est plus difficile à reconnaître par rapport au béryl, surtout sur les surfaces non altérées, car elle peut être confondue avec le quartz. Sur les surfaces altérées, la cordiérite est transformée en agrégats microcristallins de chlorites ou de muscovite, elle prend alors le nom de pinite. Si elle est altérée, la cordiérite peut être confondue avec la serpentine.
En couche mince, la biréfringence relativement faible est typique de la cordiérite. D'autres caractères diagnostiques sont la présence d'altération en pinite le long du clivage et des fractures, et les hâlons pléochroïques jaunes autour des inclusions de zircon.
Les macles peuvent aussi être présentes, parfois lamellaires, mais plus fréquemment cycliques, à des angles de 30°, 60° ou 120º.
La morphologie comprend les formes {001}, {100}, {010}, {110} et {111}. L'angle entre {110} et {110} est proche de 60º et confère au cristal une symétrie pseudohexagonale, ce qui explique l'existence de macles cycliques.
La cordiérite est insoluble dans les acides et ne fond pratiquement pas.
Cristallochimie
Elle forme une série avec la sékaninaïte (Fe2+,Mg)2Al4Si5O18.
Selon la classification de Dana, elle sert de chef de file au groupe de la cordiérite, noté 61.02.01 : elle fait partie des cyclosilicates composés d'anneaux à six membres (61) avec substitution (partielle) du silicium par de l'aluminium dans les anneaux (61.02). Selon la classification de Strunz, elle fait partie du groupe 09.CJ.10 contenant les silicates (IX), plus particulièrement les cyclosilicates (9.C) formés d'anneaux à six ou douze membres Si6O18 (9.CJ). Ces deux groupes contiennent les mêmes minéraux.
Membres du groupe de la cordiérite Minéral Formule Groupe ponctuel Groupe d'espace Cordiérite Al3Mg2AlSi5O18 mmm Cccm Sékaninaïte (Fe2+,Mg)2Al4Si5O18 mmm Cccm Ce minéral existe en deux polymorphes :
- cordiérite, stable à basse température, orthorhombique, groupe d'espace Cccm ;
- indialite, stable à haute température, hexagonale, groupe d'espace P6/mcc.
La température de transition de phase entre ces deux polymorphes est de 1 450 °C[10].
Le rapport Al/Si = 1/5 est presque toujours respecté. Les substitutions isomorphes importantes sont fer2+ et manganèse2+ pour le magnésium et fer3+ pour l'aluminium (isomorphisme de première espèce). Les cordiérites ont toujours tendance à s’enrichir en magnésium, même lorsqu'elles sont associées à des minéraux ferromagnésiens (biotite, grenats, spinelles).
La cordiérite est essentiellement isostructurale avec le béryl. Les anneaux à six membres AlSi5O18 sont reliés par des tétraèdres centrés sur l'aluminium et des octaèdres centrés sur le magnésium. Dans l'indialite, l'aluminium des anneaux est désordonné, tandis que dans la cordiérite sa position est ordonnée. Ce fait explique la différence de symétrie entre les deux polymorphes.
La topologie de la cordiérite, comme celle du béryl, est celle d'un tectosilicate (classification de Zoltai) et seule la distinction chimique entre les tétraèdres des anneaux à six membres, centrés sur le silicium et l'aluminium, et ceux hors des anneaux, centrés sur l'aluminium seulement, permet de classer ce minéral parmi les cyclosilicates (classification de Machatski-Bragg).
Cristallographie
Cordiérite
La cordiérite cristallise dans le système cristallin orthorhombique, de groupe d'espace Cccm (Z = 4 unités formulaires par maille), avec les paramètres de maille a = 17,045 Å, b = 9,713 Å et c = 9,332 Å (V = 1 544,9 Å3, masse volumique calculée = 2,51 g/cm3)[11].
Les cations Mg2+ sont en coordination (6) d'anions O2- et forment des octaèdres MgO6. La longueur de liaison Mg-O moyenne est 2,106 Å.
Les cations Al3+ sont distribués sur deux sites non-équivalents, Al1 et Al2. Tous les deux sont en coordination tétraédrique d'oxygène. Les tétraèdres Al2O4 font partie des anneaux à six membres AlSi5O18, les tétraèdres Al1O4 relient les anneaux entre eux en partageant leurs sommets avec des tétraèdres SiO4. Les longueurs de liaison Al-O moyennes sont 1,735 Å pour Al1 et 1,729 Å pour Al2.
Les cations Si4+ sont distribués sur trois sites non-équivalents, Si1, Si2 et Si3. Tous sont en coordination tétraédrique d'oxygène. Les tétraèdres Si2O4 et Si3O4 font partie des anneaux à six membres AlSi5O18, les tétraèdres Si1O4 relient les anneaux entre eux en partageant leurs sommets avec les tétraèdres Al2O4. Les longueurs de liaison Si-O moyennes sont 1,641 Å pour Si1, 1,618 Å pour Si2 et 1,606 Å pour Si3.
Indialite
L'indialite cristallise dans le système cristallin hexagonal, de groupe d'espace P6/mcc (Z = 2), avec les paramètres de maille a = 9,769 Å et c = 9,337 Å (V = 771,7 Å3, densité calculée = 2,52 g/cm3)[12].
Les cations Mg2+ sont en coordination (6) d'anions O2- et forment des octaèdres MgO6. La longueur de liaison Mg-O moyenne est 2,126 Å.
Les cations Al3+ et Si4+ sont distribués sur deux sites non-équivalents. Ces sites ont une occupation mixte, c'est-à-dire qu'ils ont une certaine probabilité d'être occupés soit par Al3+, soit par Si4+, l'occupation des sites se faisant de façon désordonnée dans tout le cristal (si l'occupation était ordonnée, la maille conventionnelle serait différente de celle déterminée par diffraction de rayons X). Le premier site, (Al,Si)1, contient en moyenne 90 % d'aluminium et est en coordination tétraédrique d'oxygène, avec une longueur de liaison (Al,Si)1-O moyenne 1,736 Å. Les tétraèdres (Al,Si)1O4 relient les anneaux à six membres entre eux. Le second site, (Si,Al)2, est placé dans les anneaux à six membres : chaque tétraèdre (Si,Al)2O4 de l'anneau est identique. Le site (Si,Al)2 contient en moyenne 78 % de silicium et est en coordination tétraédrique d'oxygène, avec une longueur de liaison (Si,Al)2-O moyenne 1,637 Å.
Gîtes et gisements
Gîtologie et minéraux associés
La cordiérite apparaît dans les sédiments argileux subissant un métamorphisme thermique. Elle apparaît dès les premiers stades du métamorphisme, associée à la biotite et l'andalousite. Mais elle demeure dans les stades plus élevés du métamorphisme.
La cordiérite peut également apparaître dans les roches issues d’un métamorphisme régional. Il s’agit alors d’un métamorphisme de haut degré : gneiss à cordiérite.
La cordiérite peut également se trouver dans quelques roches magmatiques : pegmatites granitiques, norites à cordiérite dérivées d'un magma gabbroïque contaminé par du matériel argileux.
La cordiérite peut être associée à l'andalusite, la biotite, le corindon, des feldspaths potassiques, des grenats, la muscovite, la sillimanite et des spinelles.
Gisements producteurs de specimens remarquables
- Allemagne
- Großer Arber, Bayerisch Eisenstein, Zwiesel, Bayerischer Wald, Basse-Bavière, Bavière (topotype)
- Algérie
- Kef Cheraya, Cap Bougaroun, Collo, province de Skikda[13]
- Canada
- Mine Madeleine, Mont-Albert, La Haute-Gaspésie RCM, Gaspésie–Îles-de-la-Madeleine, Québec[14]
- L'Île-du-Grand-Calumet, Pontiac RCM, Outaouais, Québec[15]
- France
- Carrière de Granite, Vieille-Brioude, Brioude, Haute-Loire, Auvergne[16]
- Cransac, Decazeville, Aveyron, Midi-Pyrénées[17]
- Carrière de Saint-Symphorien-sur-Coise, Chazelles-sur-Lyon, Lyon, Rhône, Rhône-Alpes[18]
- Italie
- Roccatederighi, Roccastrada, province de Grosseto, Toscane
Exploitation des gisements
Les cristaux gemmes peuvent être taillés comme pierre fine (facettes, cabochons).
Notes et références
- (en) Thomas Armbruster, « Role of Na in the structure of low-cordierite: A single-crystal X-ray study », dans American Mineralogist, vol. 71, no 5-6, 1986, p. 746 [texte intégral]
- classification des minéraux choisie est celle de Strunz. La
- Atomic weights of the elements 2007 sur www.chem.qmul.ac.uk Masse molaire calculée d’après
- (en) John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh et Monte C. Nichols, The Handbook of Mineralogy : Silica, Silicates, vol. II, Mineral Data Publishing, 1995
- François Rozier, dans Journal de physique, de chemie, d'histoire naturelle et des arts, vol. 68, 1809, p. 298
- (en) James Nicol, Manual of mineralogy: or, The natural history of the mineral kingdom, 1849, p. 261
- Archives des découvertes et des inventions nouvelles, vol. 14, 1822, p. 74
- Georges Louis Leclerc de Buffon, Œuvres complètes de Buffon, vol. 6, 1835, p. 193
- Jacques Eustache de Sève, Nouveau dictionnaire d'histoire naturelle, appliquée aux arts, vol. 32, 1819, p.138
- (en) Andrew Putnis, « The distortion index in anhydrous Mg-Cordierite », dans Contributions to Mineralogy and Petrology, vol. 74, no 2, 1980, p. 135-141 [lien DOI]
- ICSD No. 86 346 ; (en) B. Winkler, M.T. Dove et M. Leslie, « Static lattice energy minimization and lattice dynamics calculations on aluminosilicate materials », dans American Mineralogist, vol. 76, no 3-4, 1991, p. 313-331 [texte intégral]
- ICSD No. 75 987 ; (en) P. Thomas, I. Gouby, D. Mercurio, T. Merle et B. Frit, « Synthesis and structural characterization of Cu(I) and Cu(II)-doped cordierites », dans Materials Research Bulletin, vol. 30, no 2, 1995, p. 141-148 [lien DOI]
- (en) Jean Fougnot, Michel Pichavant et Pierre Barbey, « Biotite resorption in dacite lavas from northeastern Algeria », dans European Journal of Mineralogy, vol. 8, no 3, 1996, p. 625-638
- (en) P. Girard, The Madeleine copper mine, Gaspe, Quebec, 1971, thèse de doctorat non publiée, McGill University, Montreal
- dans Econ Geol., vol. 87, 1992, p.164-171
- P.G. Pélisson, Étude Minéralogique et Métallogénique du District Filonien Polytype de Paulhaguet (Haute-Loire, Massif Central Français), 1989, thèse de doctorat, Orléans, France
- R. Pierrot, R. Pulou et P. Picot, Inventaire Minéralogique de la France N° 7 : Aveyron, BRGM, 1977
- G. Demarcq, Guides Géologiques Régionaux : Lyonnais, Vallée du Rhône, 1973, p. 40, Masson
Voir aussi
- Portail des minéraux et roches
- Portail de la chimie
Catégories :- Aluminium (minéral)
- Magnésium (minéral)
- Cyclosilicate
- Tectosilicate
- Polymorphisme
Wikimedia Foundation. 2010.