- Théorème de Borel-Cantelli
-
Le théorème de Borel-Cantelli ou lemme de Borel-Cantelli, nommé d'après les mathématiciens Émile Borel et Francesco Paolo Cantelli, est un résultat de théorie de la mesure très utilisé en théorie des probabilités.
Sommaire
Introduction
En théorie des probabilités, ce théorème concerne une suite d'événements et stipule que :
Lemme de Borel-Cantelli — Si la somme des probabilités d'une suite d'événements d'un espace probabilisé est finie, alors la probabilité qu'une infinité d'entre eux se réalisent simultanément est nulle.
L'indépendance des événements n'est pas nécessaire. Par exemple, considérons une suite de variables aléatoires, telle que, pour tout ,
La somme des est finie[1], donc d'après le lemme de Borel-Cantelli la probabilité que se produise pour une infinité d'indices est 0. En d'autres termes, avec une probabilité de 1, est non nul à partir d'un certain rang (aléatoire) On a donc appliqué le lemme de Borel-Cantelli à la suite d'évènements définie par
Limite supérieure d'ensembles
Définition — La limite supérieure d'une suite (An)n≥0 de parties d'un ensemble est l'ensemble des éléments de tels que l'assertion soit vérifiée pour une infinité d'indices .
En d'autres termes, on peut dire que si et seulement si l'ensemble est infini, ou bien non borné. Une formulation équivalente est la suivante : pour tout , on peut trouver tel que . Cette dernière formulation fournit une écriture commode de la limite supérieure d'ensembles à l'aide d'opérations élémentaires sur les ensembles :
Sous l'influence de la terminologie anglo-saxonne, on dira aussi parfois que si et seulement si "infiniment souvent" ou bien "infinitely often", d'où la notation rencontrée dans certains ouvrages :
Finalement, remarquons que la définition " si et seulement si appartient à une infinité de " peut induire en erreur : si par exemple toutes les parties sont égales, il se peut que appartienne à pour une infinité d'indices , et il se peut donc que appartienne à sans pour autant qu' appartienne à une infinité de (puisqu'il n'existe, au fond, qu'un seul ).
Théorème de Borel-Cantelli (théorie de la mesure)
Pour un espace mesuré général , le lemme de Borel-Cantelli prend la forme suivante :
Théorème de Borel-Cantelli — Soit une suite dans . Si
alors
μ(limsup nAn) = 0. DémonstrationPosons
et remarquons que
- est une suite décroissante (pour l'inclusion) d'éléments de car ;
- pour tout on a
Le deuxième point découle de la majoration
et de l'hypothèse du théorème de Borel-Cantelli, selon laquelle est le terme général d'une série convergente. Les 2 conditions permettant de conclure que
sont ainsi remplies. De plus est majorée par
qui est le reste d'une série convergente, donc
Comme
on conclut que
CQFD
Lemme de Borel-Cantelli (probabilités)
Un espace probabilisé est un cas particulier d'espace mesuré, en ce qu'on suppose, de plus, que , alors que la seule restriction du même ordre sur est En particulier, le lemme de Borel-Cantelli donné en introduction est une forme affaiblie du théorème de Borel-Cantelli donné à la section précédente. Peut-être le lemme de Borel-Cantelli est-il plus populaire en probabilités, où il est crucial dans la démonstration, par Kolmogorov, de la loi forte des grands nombres (s'il ne faut donner qu'un seul exemple). Dans le cadre probabiliste, une formulation plus formelle du lemme donné en langage intuitif dans l'introduction pourrait donc s'écrire :
Lemme de Borel-Cantelli — Dans un espace probabilisé considérons une suite d'éléments de . Si
alors
DémonstrationLa démonstration est en tout point identique à celle du théorème précédent. On pose
et on remarque que est une suite décroissante (pour l'inclusion) d'éléments de La condition "pour tout on a " est ici automatiquement remplie. La majoration
reste vraie, mais n'est pas utile pour démontrer que
propriété vraie, en probabilités, pour toute suite décroissante d'évènements. Par contre la majoration de par le reste
d'une série convergente est toujours indispensable pour conclure que
On termine de la même manière que dans le cas général, à l'aide
pour conclure que
CQFD
Loi du zéro-un de Borel
Le lemme de Borel-Cantelli ne doit pas être confondu avec la loi du zéro-un de Borel, parfois appelée second lemme de Borel-Cantelli :
Loi du zéro-un de Borel — Si les événements sont indépendants, alors vaut 0 ou 1 suivant que la série de terme général est convergente ou divergente.
La loi du zéro-un de Borel[2] montre en particulier que l'hypothèse du lemme de Borel-Cantelli ne peut en aucun cas être affaiblie en . En effet on peut avoir simultanément, d'une part , d'autre part (indépendance des et ), donc on peut avoir simultanément :
Notes et références
- Fonction zêta de Riemann, par exemple la section Valeurs de la fonction zêta pour s entier supérieur à 1. En fait elle vaut voir l'article
- Émile Borel, « Les probabilités dénombrables et leurs applications arithmétiques », dans Rendiconti del Circolo Matematico di Palermo, vol. 27, no 1, décembre 1909, p. 247-271 (ISSN 0009-725X et 1973-4409) [lien DOI]. La loi du zéro-un de Borel a été publiée en vue, semble-t-il, d'applications aux propriétés des fractions continues. Un peu plus tard, Cantelli aurait remarqué et utilisé le fait que, pour l'un des deux sens, l'hypothèse d'indépendance est superflue, ce qui a conduit au lemme de Borel-Cantelli (à vérifier).
Voir aussi
- Portail de l'analyse
- Portail des probabilités et des statistiques
Catégories :- Théorème de mathématiques
- Probabilités
- Théorie de la mesure
Wikimedia Foundation. 2010.