Loi des grands nombres

Loi des grands nombres

En statistiques, la loi des grands nombres exprime le fait que les caractéristiques d'un échantillon aléatoire se rapprochent d'autant plus des caractéristiques statistiques de la population que la taille de l'échantillon augmente. La taille de l'échantillon à considérer pour approcher les caractéristiques de la population ne dépend que faiblement, voire pas du tout, de la taille de celle-ci: que le sondage soit fait au Luxembourg ou aux États-Unis, il suffit, pour obtenir des précisions égales, de prendre des échantillons de tailles égales.

Sommaire

Historique

Initialement c'est Jacob Bernoulli qui en définit le premier modèle mathématique vers 1690, publié en 1715 dans la quatrième partie de son Ars conjectandi[1].

C'est sur cette loi que reposent la plupart des sondages[2]. Ils interrogent un nombre suffisamment important de personnes pour connaître l'opinion (probable) de la population entière. De même, sans la formalisation de cette loi, l'assurance n'aurait jamais pu se développer avec un tel essor. En effet, cette loi permet aux assureurs de déterminer les probabilités que les sinistres dont ils sont garants se réalisent ou non.

La loi des grands nombres sert aussi en statistique inférentielle, pour déterminer une loi de probabilité à partir d'une série d'expériences.

Les mathématiciens distinguent deux énoncés, appelés respectivement « loi faible des grands nombres » et « loi forte des grands nombres ».

La loi des grands nombres soulève une question d'ordre métaphysique : personne ne s'étonne que des évènements considérés de façon isolée soient soumis au hasard (il n'est pas impossible d'obtenir 1 000 fois pile en lançant une pièce de monnaie 1 000 fois, mais cette probabilité est extrêmement faible). Et pourtant, si l'on fait l'expérience, on constate qu'on obtient environ 50 % de pile et 50 % de face, comme s'il existait une loi d'équilibre naturelle, comme si le chaos était impossible et les catastrophes improbables.

Il ne faut toutefois pas confondre la moyenne des gains et le gain absolu. Si deux joueurs jouent très longtemps à pile ou face, celui qui perd donnant un euro à celui qui gagne, la moyenne des gains de chaque joueur tendra effectivement vers 0 (la moyenne étant définie comme le gain divisé par le nombre de parties jouées), mais le gain de chaque joueur connaîtra beaucoup d'irrégularités, et les inversions ne sont pas exclues. Plus important encore : « l'excédent des pile sur les face, ou l'inverse, est de l'ordre de \scriptstyle\ \mathcal{O}(\sqrt N),\ N désigne le nombre de tirages ». Cela ne contredit en rien la loi des grands nombres, car \scriptstyle\ \sqrt N/N tend bien vers 0 à mesure que N augmente.

Dans son ouvrage Les Certitudes du hasard, Marcel Boll imagine un million de Parisiens commençant à jouer à pile ou face en 1789 à raison d'un coup par seconde, en convenant de ne s'arrêter qu'à égalité. Deux secondes après le début, la moitié des joueurs ont terminé; le calcul montre cependant qu'en 1942, date de sortie de l'ouvrage, une demi-douzaine de joueurs seront encore en train d'attendre cette égalité, avec de moins en moins de chances de la voir se produire[3].

Vers 1820, Robert Brown observe le comportement erratique d'un grain de pollen dans un liquide : plus on attend, plus les particules s'éloignent de leur point de départ, dans un mouvement d'amplitude croissante. Le moteur de ce mouvement mentionné en 1900 par Louis Bachelier et étudié en détail par Albert Einstein en 1905 est précisément l'écart à la moyenne[4]. Pour Andreï Kolmogorov, la valeur épistémologique de la théorie des probabilités est fondée sur le fait que les phénomènes aléatoires engendrent à grande échelle une régularité stricte, où l'aléatoire a, d'une certaine façon, disparu. Appliquée aux sociétés humaines, cette régularité statistique absolue qu'évoque Kolmogorov pose l'interrogation suivante : nos actions individuelles peuvent-elles être autre chose que la confirmation d'une tendance générale qui nous dépasse [5]?

Loi faible des grands nombres

La loi faible des grands nombres est également appelée théorème de Khintchine (rarement utilisé).

On considère une suite (X_n)_{n\in\N^*} de variables aléatoires indépendantes définies sur un même espace probabilisé, ayant même variance finie et même espérance notées respectivement V(X) et E(X). La loi faible des grands nombres stipule que, pour tout réel ε strictement positif, la probabilité que la moyenne empirique Y_n \equiv \bar x= \frac{1}{n} \sum_{i=1}^{n} X_i s'éloigne de l'espérance d'au moins ε, tend vers 0 quand n tend vers l'infini.

Théorème — \forall\varepsilon>0,\quad \lim_{n \to +\infty} \mathbb{P}\left(\left|\frac{X_1+X_2+\cdots+X_n}{n} -E(X)\right| \geqslant \varepsilon\right) = 0

Autrement dit, (Y_n)_{n\in\N^*} converge en probabilité vers E(X). Ce résultat est très important en statistique, puisqu'il assure que la moyenne empirique est un estimateur convergent de l'espérance.

La loi faible des grands nombres se démontre en utilisant l'inégalité de Bienaymé-Tchebychev :

Loi forte des grands nombres

Article détaillé : Loi forte des grands nombres.

Considérons une suite (X_n)_{n\in\N} de variables aléatoires indépendantes qui suivent la même loi de probabilité, intégrables, i. e. E(|X_0|)<+\infty. En reprenant les notations ci-dessus, la loi forte des grands nombres précise que (Y_n)_{n\in\N} converge vers E(X) « presque sûrement ».

C’est-à-dire que :

Théorème — \mathbb{P}\left(\lim_{n \to +\infty} Y_n = E(X)\right)=1

Autrement dit, selon la loi forte des grands nombres, la moyenne empirique est un estimateur fortement convergent de l'espérance.

Convergence vers une loi de probabilité

La loi des grands nombres permet de dire que la répartition de la population de l'échantillon peut être approchée par la loi de probabilité de X pour n assez grand.

En effet, pour tout i, la fréquence fn(i) de la valeur xi dans l'échantillon (X_1,\dots,X_n) converge vers la probabilité pi.

Pour le prouver, on fixe désormais i et l'on considère pour tout k la variable aléatoire Bk indicatrice de l'évènement (Xk = xi).
Cela signifie (par définition) que Bk(ω) = 1 si Xk(ω) = xi et Bk(ω) = 0 si X_k(\omega) \neq x_i.

La suite (Bk) est constituée de variables aléatoires indépendantes suivant la même loi de Bernoulli de paramètre pi ; elles possèdent une variance finie et leur espérance commune est E(B) = pi.

Or, pour tout n, f_n(i) = \frac{1}{n}\left(B_1+\cdots+B_n\right). Donc la fréquence fn(i) converge vers pi :

  • en probabilité (d'après la loi faible des grands nombres)
  • presque sûrement (d'après la loi forte des grands nombres)

Exemple d'application

Lorsqu'on a fait un sondage auprès de mille personnes sur un sujet, un résultat de 49 % de "oui" et 51 % de "non" n'est pas significatif suivant la loi des grands nombres. En effet, la faible différence entre les "oui" et les "non" est inférieure aux fluctuations moyennes entre les différents sondages possibles, qui est de l'ordre de 3 %. Pour atteindre une précision de 1 %, il faudrait sonder un échantillon neuf fois plus grand[6].

Notes et références

Notes

  1. Norbert Meusnier:Argumentation et démonstration de la loi des grands nombres dans La démonstration mathématique dans l'histoire, Besançon, IREM, 1989, pp.89-97.
  2. Ceux qui n'utilisent pas spécifiquement la règle des quotas.
  3. Marcel Boll, Les certitudes du hasard, PUF, 1942.
  4. Jean-Philippe Bouchaud, La Recherche, hors série n°2, page 67.
  5. Jean-Philippe Bouchaud, La Recherche, hors série n°2, page 71.
  6. Jean-Philippe Bouchaud, Les lois des grands nombres, La Recherche, Hors série : l'univers des nombres, n°2, Août 1999, page 68.

Références

  • Geoffrey Grimmett et David Strizaker: Probability and Random Processes.
  • Dominique Foata et Aimé Fuchs: Calcul des Probabilités.
  • Portail des probabilités et des statistiques Portail des probabilités et des statistiques

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Loi des grands nombres de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Loi Des Grands Nombres — En statistiques, la loi des grands nombres indique que lorsque l on fait un tirage aléatoire dans une série de grande taille, plus on augmente la taille de l échantillon, plus les caractéristiques statistiques de l échantillon se rapprochent des… …   Wikipédia en Français

  • loi des grands nombres — didžiųjų skaičių dėsnis statusas T sritis fizika atitikmenys: angl. law of large numbers vok. Gesetz der großen Zahlen, n rus. закон больших чисел, m pranc. loi des grands nombres, f …   Fizikos terminų žodynas

  • Loi Forte Des Grands Nombres — La loi forte des grands nombres est un énoncé mathématique énonçant la moyenne d une suite de variables aléatoires converge presque sûrement vers la même constante que l espérance de la moyenne, sous certaines conditions (sur la dépendance, sur l …   Wikipédia en Français

  • Loi faible des grands nombres — Loi des grands nombres En statistiques, la loi des grands nombres indique que lorsque l on fait un tirage aléatoire dans une série de grande taille, plus on augmente la taille de l échantillon, plus les caractéristiques statistiques de l… …   Wikipédia en Français

  • Loi forte des grands nombres — Une loi forte des grands nombres est une loi mathématique selon laquelle la moyenne des n premiers termes d une suite de variables aléatoires converge presque sûrement vers une constante (non aléatoire), lorsque n tend vers l infini. Lorsque ces… …   Wikipédia en Français

  • Loi faible des grands nombres — ● Loi faible des grands nombres loi que suit une suite de variables aléatoires si la moyenne de ces variables converge en probabilité vers une variable aléatoire ou un nombre certain …   Encyclopédie Universelle

  • Loi forte des grands nombres — ● Loi forte des grands nombres loi que suit une suite de variables aléatoires si la moyenne de ces variables converge presque sûrement vers une variable aléatoire ou un nombre certain …   Encyclopédie Universelle

  • LOI — Le mot «loi» est l’un des plus polyvalents qui soient, et cela, avant tout, parce que la réalité qu’il recouvre est ambiguë, ou plutôt d’une complexité historique et existentielle difficile à tirer au clair. Pour ne conserver que l’acception… …   Encyclopédie Universelle

  • Loi Binomiale — Binomiale Densité de probabilité / Fonction de masse Fonction de répartition …   Wikipédia en Français

  • Loi binômiale — Loi binomiale Binomiale Densité de probabilité / Fonction de masse Fonction de répartition …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”