Espace séparé

Espace séparé
Page d'aide sur l'homonymie Ne pas confondre avec la structure d'espace séparable.
Deux points admettant des voisinages disjoints.

Sommaire

Définition

En mathématiques, un espace séparé, dit aussi espace de Hausdorff, est un espace topologique dans lequel deux points distincts quelconques admettent toujours des voisinages disjoints. Cette condition est aussi appelée axiome T2 au sein des axiomes de séparation.

L'appellation fait référence à Felix Hausdorff, mathématicien allemand et l'un des fondateurs de la topologie, qui avait inclus cette condition dans sa définition originale d'espace topologique.

Cette propriété de séparation équivaut à l'unicité de la limite de tout filtre convergent.

Exemples et contre-exemples

Tout espace métrique est séparé. En effet, deux points situés à une distance L l'un de l'autre admettent comme voisinages disjoints les boules de rayon L / 3 centrées sur chacun d'eux.

Tout espace discret est séparé, chaque singleton constituant un voisinage de son élément. En particulier, un espace discret non dénombrable est séparé et non séparable.

Des exemples d'espaces non séparés sont donnés par :

Principales propriétés

  • Dans un espace topologique séparé, une suite convergente a une limite unique.
  • Deux applications continues à valeurs dans un séparé qui coïncident sur une partie dense sont égales. Plus explicitement : si Y est séparé, si f,g:X\to Y sont deux applications continues et s'il existe une partie D dense dans X telle que \forall x\in D,\; f(x)=g(x) alors \forall x\in X,\; f(x)=g(x).
  • Une topologie plus fine qu'une topologie séparée est toujours séparée.

Nuvola apps important.svg Par contre un espace quotient d'un espace séparé n'est pas toujours séparé.

  • X est séparé si et seulement si, dans l'espace produit X\times X, la diagonale \{(x,x);x\in X\} est fermée.

A voir

Pages liées



Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Espace séparé de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Espace Séparé — En topologie et dans d autres branches des mathématiques, un espace séparé ou espace de Hausdorff est un espace topologique dans lequel, pour deux points distincts x et y quelconques, il existe un voisinage de x et un voisinage de y disjoints. De …   Wikipédia en Français

  • Espace separe — Espace séparé En topologie et dans d autres branches des mathématiques, un espace séparé ou espace de Hausdorff est un espace topologique dans lequel, pour deux points distincts x et y quelconques, il existe un voisinage de x et un voisinage de y …   Wikipédia en Français

  • Espace de Hausdorff — Espace séparé En topologie et dans d autres branches des mathématiques, un espace séparé ou espace de Hausdorff est un espace topologique dans lequel, pour deux points distincts x et y quelconques, il existe un voisinage de x et un voisinage de y …   Wikipédia en Français

  • Espace Préhilbertien — En mathématiques, un espace préhilbertien est défini comme un espace vectoriel réel ou complexe muni d un produit scalaire. Cette notion généralise celles d espace euclidien ou hermitien, en omettant l hypothèse de la dimension finie. Le cas… …   Wikipédia en Français

  • Espace prehilbertien — Espace préhilbertien En mathématiques, un espace préhilbertien est défini comme un espace vectoriel réel ou complexe muni d un produit scalaire. Cette notion généralise celles d espace euclidien ou hermitien, en omettant l hypothèse de la… …   Wikipédia en Français

  • Espace Normal — Un espace topologique séparable X est dit normal lorsque, pour tout couple de fermés disjoints E et F de X, il existe un couple d ouverts disjoints U et V tels que U contienne E et V, F. En mathématiques, un espace normal est un cas particulier d …   Wikipédia en Français

  • Espace topologique normal — Espace normal Un espace topologique séparable X est dit normal lorsque, pour tout couple de fermés disjoints E et F de X, il existe un couple d ouverts disjoints U et V tels que U contienne E et V, F. En mathématiques, un espace normal est un cas …   Wikipédia en Français

  • Espace Localement Compact — En topologie, un espace localement compact est un espace qui, sans être nécessairement compact lui même, admet des voisinages compacts pour tous ses points. On peut y généraliser (au moins partiellement) beaucoup de résultats sur les espaces… …   Wikipédia en Français

  • Espace vectoriel topologique localement convexe séparé — Espace localement convexe Sommaire 1 Définition 2 Critère de séparation 3 Continuité d une fonction 4 Espace métrisable …   Wikipédia en Français

  • Espace Localement Convexe — Sommaire 1 Définition 2 Critère de séparation 3 Continuité d une fonction 4 Espace métrisable …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”