Systeme de coordonnees

Systeme de coordonnees

Système de coordonnées

Page d'aide sur l'homonymie Pour les articles homonymes, voir Système de coordonnées (homonymie).

En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N dimensions, un N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps quelconque. Plus généralement, les coordonnées peuvent provenir d'un anneau ou d'une autre structure algébrique apparentée.

On considère que l'espace existe en lui-même indépendamment du choix d'un système de coordonnées particulier.

Articles d'analyse vectorielle
Champ vectorielChamp scalaire
Objets d'étude
Champ vectoriel Champ scalaire
Équation aux dérivées partielles
de Laplace de Poisson
Opérateurs
Nabla Gradient
Rotationnel Divergence
Laplacien scalaire Bilaplacien
Laplacien vectoriel D'alembertien
Théorèmes
de Green de Stokes
de Helmholtz de flux-divergence
du gradient du rotationnel

Sommaire

Exemples

Le cas le plus courant est la notion de coordonnées en géométrie, voir l'article Repérage dans le plan et dans l'espace : on choisit un point de repère appelé « origine », et trois « règles graduées » de directions distinctes qui ne sont pas dans le même plan (dans le plan, deux direction suffisent). Les coordonnées de ce point sont appelées « abscisse », « ordonnée » et « cote », et sont notées respectivement x, y et z. Voir aussi l'article Géométrie analytique.

En géographie, on associe une longitude et une latitude à des endroits géographiques ; c'est un système de coordonnées. Dans ce cas, la paramétrisation n'est pas unique aux pôles Nord et Sud.

Un exemple de système de coordonnées permet de décrire un point P dans l'espace euclidien \mathbb{R}^n par un n-uplet :

\ P = (r_1, ..., r_n)

\ r_1, ..., r_n étant des nombres réels appelés coordonnées du point P.

Si un sous-ensemble S d'un espace euclidien est appliqué de façon continue sur un autre espace topologique, cela définit les coordonnées de l'image de S. On peut parler de paramétrisation de l'image, puisque ce processus assigne des nombres aux points. La correspondance est unique seulement si l'application est bijective.

Transformations

Une transformation de coordonnées est une conversion d'un système à un autre pour décrire le même espace.

Certains choix de système de coordonnées peut conduire à des paradoxes, par exemple au voisinage d'un trou noir, qui peuvent être résolus en changeant de système. Cela n'est toutefois pas possible en une véritable singularité mathématique.

Systèmes courants

Quelques systèmes de coordonnées couramment utilisés :

Systèmes utilisés en astronomie

L'astronomie utilise plusieurs systèmes de coordonnées pour noter la direction d'un objet céleste :

Autres

En relativité générale, certains systèmes de coordonnées sont choisies de façon à simplifier les calculs.

  • Un système de coordonnées harmoniques représente un système de coordonnées qui, vues comme étant des champs vectoriels sont de laplacien nul.
  • Plus généralement, le système de coordonnées est essentiellement arbitraire en relativité générale, la structure des équations ne dépendant pas du choix de coordonnées. Cependant, lorsque vient la phase de résolution des équations du champ gravitationnel, certains systèmes de coordonnées s'avèrent plus commodes que d'autres, ou permettent une interprétation physique simple des résultats obtenus. Les classes de systèmes de coordonnées possédant telle ou telle propriété sont appelés jauge. Dans le domaine de la théorie des perturbations cosmologiques, le choix d'une telle jauge peut présenter des avantages.
  • Portail de la géométrie Portail de la géométrie
Ce document provient de « Syst%C3%A8me de coordonn%C3%A9es ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Systeme de coordonnees de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Système de coordonnées — Pour les articles homonymes, voir Système de coordonnées (homonymie). En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d un espace à N dimensions, un N uplet de scalaires. Dans beaucoup de cas, les scalaires …   Wikipédia en Français

  • système de coordonnées — koordinačių sistema statusas T sritis automatika atitikmenys: angl. coordinate system vok. Koordinatensystem, n rus. система координат, f pranc. système de coordonnées, m …   Automatikos terminų žodynas

  • système de coordonnées — koordinačių sistema statusas T sritis fizika atitikmenys: angl. coordinate system; frame of axes; system of axes vok. Achsenkreuz, n; Koordinatensystem, n rus. координатная система, f; система координат, f pranc. système de coordonnées, m …   Fizikos terminų žodynas

  • Système de coordonnées cylindriques — Coordonnées polaires Un cercle découpé en angles mesurés en degré Les coordonnées polaires sont, en mathématiques, un système de coordonnées à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une… …   Wikipédia en Français

  • Système de coordonnées polaires — Coordonnées polaires Un cercle découpé en angles mesurés en degré Les coordonnées polaires sont, en mathématiques, un système de coordonnées à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une… …   Wikipédia en Français

  • Système de coordonnées sphériques — Coordonnées polaires Un cercle découpé en angles mesurés en degré Les coordonnées polaires sont, en mathématiques, un système de coordonnées à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une… …   Wikipédia en Français

  • Systeme de coordonnees georeferencees — Système de coordonnées géoréférencées Sommaire 1 Introduction 2 Classification des systèmes de coordonnées géoréférencés 3 Les codes EPSG …   Wikipédia en Français

  • Systeme de coordonnees (Cartographie) — Système de coordonnées (Cartographie) En cartographie, un système de coordonnées est un référentiel dans lequel on peut représenter des éléments dans l espace. Ce système permet de se positionner sur l ensemble du globe terrestre grâce à un… …   Wikipédia en Français

  • Système de coordonnées (Cartographie) — En cartographie, un système de coordonnées est un référentiel dans lequel on peut représenter des éléments dans l espace. Ce système permet de se positionner sur l ensemble du globe terrestre grâce à un couple de coordonnées géographiques. Pour… …   Wikipédia en Français

  • Système de coordonnées géographiques — Système de coordonnées (Cartographie) En cartographie, un système de coordonnées est un référentiel dans lequel on peut représenter des éléments dans l espace. Ce système permet de se positionner sur l ensemble du globe terrestre grâce à un… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”