- Système de coordonnées cylindriques
-
Coordonnées polaires
Les coordonnées polaires sont, en mathématiques, un système de coordonnées à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une distance. Ce système est particulièrement utile dans les situations où la relation entre deux points est plus facile à exprimer en termes d’angle et de distance, voir par exemple le pendule. Dans ce cas, le système des coordonnées cartésiennes, plus familier, impliquerait d’utiliser des formules trigonométriques pour exprimer une telle relation.
Comme il s’agit d’un système bidimensionnel, chaque point est déterminé par les coordonnées polaires, qui sont la coordonnée radiale et la coordonnée angulaire. La coordonnée radiale (souvent notée r ou ρ, et appelée rayon) exprime la distance du point à un point central appelé pôle (équivalent à l’origine des coordonnées cartésiennes). La coordonnée angulaire (également appelée angle polaire ou azimut, et souvent notée t ou θ) exprime la mesure, dans le sens trigonométrique, de l’angle entre le point et la demi-droite d’angle 0 °, appelé axe polaire (équivalent à l’axe des abscisses en coordonnées cartésiennes).[1]
Sommaire
Histoire
Le concept d’angle et de rayon était déjà utilisé lors du premier millénaire avant J.C. L’astronome Hipparque créa une table trigonométrique qui donnait la longueur de la corde pour chaque angle, et il utilisait les coordonnées polaires pour établir les positions des étoiles.[2] Dans Des spirales, Archimède étudia la spirale d'Archimède, une fonction mathématiques dont le rayon dépend de l’angle. Cependant les grecs ne l’étendront pas à un système de coordonnées complet.
Il existe plusieurs versions de l’introduction des coordonnées polaires comme système de coordonnées formel. Grégoire de Saint-Vincent et Bonaventura Cavalieri ont indépendamment introduit ce concept dans le milieu du dix-septième siècle. Saint-Vincent a écrit sur ce thème en 1625 et a publié son travail en 1647, pendant que Cavalieri publia ses écrits en 1635, une version corrigée vit le jour en 1653. Cavalieri a d’abord utilisé les coordonnées polaires pour résoudre un problème relatif à l’aire sous une spirale d'Archimède. Blaise Pascal usait largement des coordonnées polaires pour calculer la longueur de paraboles.
Dans Méthode des Fluxions (écrit en 1671, publié en 1736) Sir Isaac Newton étudia les transformations entre les coordonnées polaires, qu'il appelait "Seventh Manner; For Spirals", et neuf autres systèmes de coordonnées.[3] Dans le journal Acta Eruditorum (1691), Jacob Bernoulli utilisa un système avec un point et une droite, appelés respectivement le pôle et l'axe polaire. Les coordonnées étaient déterminées par leur distance au pôle et leur angle par rapport à l'axe polaire. Le travail de Bernouilli utilisa même ce système pour déterminer le rayon de courbure de courbes exprimées dans ce système.
Le terme actuel de coordonnées polaires a été attribué à Gregorio Fontana et a été utilisé par les écrivains italiens du XIIIe siècle. Le terme apparait en anglais pour la première fois dans la traduction de 1816 effectuée par George Peacock du Traité du calcul différentiel et du calcul intégral de Sylvestre-François Lacroix.[4],[5] Alexis Clairaut fut le premier à penser à étendre les coordonnées polaires en trois dimensions, et Leonhard Euler a été le premier à vraiment les développer.[6]
Placer des points en coordonnées polaires
Chaque point du plan est déterminé par les coordonnées polaires, qui sont la coordonnée radiale et la coordonnée angulaire. La coordonnée radiale (souvent notée r ou ρ, et appelé rayon) exprime la distance du point à un point central appelé pôle (équivalent à l’origine des coordonnées cartésiennes). La coordonnée angulaire (également appelée angle polaire ou azimut, et souvent notée t ou θ) exprime la mesure, dans le sens trigonométrique, de l’angle entre le point et la demi-droite d’angle 0 °, appelé axe polaire (équivalent à l’axe des abscisses en coordonnées cartésiennes).[1]
Par exemple, le point de coordonnées polaires (3;60 °) sera placé à trois unités de distance du pôle sur la demi-droite d’angle 60 °. Le point (-3 ;--120 °) sera au même endroit car une distance négative sera considérée comme une mesure positive sur la demi-droite opposée par rapport au pôle (tournée de 180 ° par rapport à la demi-droite d’origine).
L’un des aspects importants du système de coordonnées polaires, qui n’est pas présent dans le système cartésien, est qu’il existe une infinité de coordonnées polaires désignant un même et unique point. En effet, on peut rajouter des mesures d’un tour complet sans affecter l’emplacement du point. Par exemple, le point (3;420 °) est confondu avec le point (3;60 °). En général, le point (r;θ) peut être représenté par (r;θ ± n×360 °) ou (−r;θ ± (2n + 1)180 °), où n est un entier quelconque.[7]
Les coordonnées arbitraires (0;θ) sont conventionnellement utilisées pour représenter le pôle, sans se soucier de l’angle θ, un point de rayon r=0 sera toujours sur le pôle. [8] Pour obtenir un unique représentant du point, on limite le rayon aux réels positifs et l’angle entre --180 ° et 180 ° (ou 0 ° et 360 °), ou si l’on utilise les radians entre –π et π (ou 0 et 2π). On dit que l’angle est donné modulo 360 ° ou 2π.[9]
L’angle en notation polaire est généralement donné en degrés ou radians, en utilisant la convention 2π=360 °. Le choix dépend du contexte. En navigation, les degrés sont de rigueur, alors que certaines applications physiques (comme l’étude des rotations en mécaniques) et la plupart des mathématiques utilisent les radians.[10]
Conversion entre système polaire et cartésien
Les deux coordonnées polaires r et θ peuvent être converties en coordonnées cartésiennes x et y en utilisant les fonctions trigonométriques sinus et cosinus :
- x = rcosθ
- y = rsinθ
Deux coordonnées cartésiennes x et y peuvent être converties en coordonnée polaire r par :
- (par une simple application du théorème de Pythagore).
Pour déterminer l’angle θ, nous devons distinguer deux cas :
- Pour r=0, l’angle peut prendre n’importe quelle valeur réelle.
- Pour r≠0, pour obtenir une unique valeur de θ, on se restreint à l’intervalle [0;2π[ (ou de manière équivalente ]-π;π]).
Pour obtenir θ dans l’intervalle [0;2π[, on utilise les formules suivantes (arctan désigne la réciproque de la fonction tangente) :
- 0 \mbox{ et } y \ge 0\\ \arctan(\frac{y}{x}) + 2\pi & \mbox{si } x > 0 \mbox{ et } y < 0\\ \arctan(\frac{y}{x}) + \pi & \mbox{si } x < 0\\ \frac{\pi}{2} & \mbox{si } x = 0 \mbox{ et } y > 0\\ \frac{3\pi}{2} & \mbox{si } x = 0 \mbox{ et } y < 0 \end{cases}" style="max-width : 98%; height: auto; width: auto;" src="/pictures/frwiki/97/a6e1a55a81045ed4b95aca121f8136fd.png" border="0">
Pour l’obtenir dans l’intervalle ]-π; π], on utilise les formules :[11]
- 0\\ \arctan(\frac{y}{x}) + \pi & \mbox{si } x < 0 \mbox{ et } y \ge 0\\ \arctan(\frac{y}{x}) - \pi & \mbox{si } x < 0 \mbox{ et } y < 0\\ \frac{\pi}{2} & \mbox{si } x = 0 \mbox{ et } y > 0\\ -\frac{\pi}{2} & \mbox{si } x = 0 \mbox{ et } y < 0 \end{cases}" style="max-width : 98%; height: auto; width: auto;" src="/pictures/frwiki/102/f36c2b8acf620978ada190c384ab6610.png" border="0">
Équation polaire
Une équation qui définit une courbe algébrique exprimée en coordonnées polaires est connue sous le nom d’équation polaire. Dans la plupart des cas, une telle équation peut être spécifié en définissant r comme une fonction de θ. La courbe résultante est alors formée des points du type (r(θ);θ) et peut être vu comme le graphe de la fonction polaire r.
Différentes formes de symétries peuvent être déduite de l’équation d’une fonction polaire. Si r(-θ)=r(θ) alors la courbe est symétrique par rapport à l’axe horizontal (les demi-droites 0 ° et 180 °). Si r(π-θ)=r(θ), la courbe sera symétrique par rapport à l’axe vertical (90 ° et 270 °).
À cause du caractère circulaire des coordonnées polaires, beaucoup de courbes peuvent être décrite par une équation polaire simple, alors que leur équation cartésienne serait beaucoup plus compliquée. Quelques courbes polaires les plus connues sont : la spirale d'Archimède, le lemniscate de Bernoulli, le limaçon de Pascal ou encore la cardioïde.
Cercle
L'équation générale d'un cercle de centre (r0;φ) est:
Dans de nombreux cas, cette équation est simplifiée[12]. Par exemple, pour un cercle centré sur le pôle et de rayon a:
- r(θ) = a
Droite
Une droite radiale (qui passe par le pôle) est représentée par l'équation:
où φ est l'angle de la droite. On a φ=arctan m où m est la pente de la droite en coordonnées cartésiennes.
Une droite non radiale qui coupe perpendiculairement au point (r0;φ) la droite radiale θ = φ a pour équation:
Rosace
Une rosace est une courbe très connue qui ressemble à des pétales de fleurs, et qui peut être exprimée par une simple équation polaire:
- r(θ) = acos(kθ + φ0)
Pour n'importe quelle constante réelle φ0. Si k est un entier, cette équation produit une fleur avec 2k pétale(s) si k est paire, et k pétale(s ) si k est impaire. Si k est un nombre rationnel, l'équation produit une courbe en forme de fleur dont les pétales se chevauchent. Ces équations ne peuvent fournir de courbe en forme de fleur à 2,6,10,14,... pétales. La constante réelle a détermine la longueur d'un pétale.
Spirale d'Archimède
La spirale d'Archimède est une spirale célèbre découverte par Archimède, qui peut être également exprimée à partir d'une équation polaire simple:
- r(θ) = a + bθ
Changer le paramètre a tourne la spirale, alors que b détermine la distance entre les bras, qui pour une spirale donnée est constante. Une spirale d'Archimède possède deux bras, l'un pour θ>0 et l'autre pour θ<0. Les deux bras sont connectés au pôle. Chaque bras est le symétrique de l'autre par rapport à l'axe vertical (90 °/270 °). Cette courbe est l'une des premières courbe, après les coniques, à être décrite par des termes mathématiques; et à être un exemple de courbe simplement exprimée dans le système des coordonnées polaires.
Conique
Une conique avec un foyer confondu avec le pôle et un autre sur l'axe polaire (0 °), le grand axe étant confondu avec l'axe polaire) est donnée par l'équation:
où e est l'excentricité et p est le demi-latus rectum (la longueur du segment perpendiculaire au grand axe, du foyer (différent du pôle) à la courbe). Si e>1 l'équation définit une hyperbole, si e=1, une parabole, si e<1 une ellipse. Enfin pour e=0 on obtient un cercle de rayon p.
Nombre complexe
Chaque nombre complexe peut être représenté par un point dans le plan complexe, et de plus peuvent être exprimés par les coordonnées cartésiennes (appelé forme algébrique du nombre complexe) ou ses coordonnées polaires. La forme algébrique d'un nombre complexe z est de la forme:
- z = x + iy
où x et y sont des réels et i est l'unité imaginaire. Sa forme polaire est (donnée par les formules données plus haut):
- z = r(cosθ + isinθ)
où r est un réel positif non nul et θ un réel. De là on en déduit:
- z = reiθ
ce qui est équivalent par formule d'Euler[13] (à noter que toutes ces formules, à l'instar de toutes les autres utilisant l'exponentielle ou les angles, utilisent les radians). Pour convertir d'une forme à l'autre, les formules données plus haut conviennent).
L'addition de nombre complexe est plus aisé en forme algébrique mais la multiplication, la division et l'exponentiation sont plus facile à réaliser en forme exponentielle (ou de manière équivalente en forme polaire):
- Multiplication:
- Division:
- Exponentiation (formule de De Moivre) avec n entier:
Calcul infinitésimal
Le Calcul infinitésimal peut être appliqué aux équations exprimées en coordonnées polaires. La coordonnée angulaire θ est exprimée en radian, qui est le choix naturel en analyse.[14],[15]
Calcul différentiel
Nous avons les formules suivantes:
- ,
- .
Pour trouver la pente cartésienne de la tangente à la courbe polaire r(θ) à un point donné, la courbe doit d'abord être exprimée en un système paramétrique:
- x = r(θ)cosθ,
- y = r(θ)sinθ.
Puis nous différentions les deux équations:
- ,
- .
Divisons la deuxième équation par la première et nous obtenons la pente cartésienne de la tangente à la courbe polaire au point (r; r(θ)):
- .
Calcul intégral
Soit R une surface du plan délimitée par la courbe continue r(θ) et les demi-droites θ = a et θ = b, où 0 < b − a < 2π (a et b sont des réels). Alors la superficie S de cette surface est
- .
Le résultat peut être retrouvé par le raisonnement suivant. Tout d'abord, l'intervalle [a, b] est subdivisé en n sous-intervalles, où n est un entier positif quelconque. Alors Δθ, la longueur de chaque sous-intervalle, est égal à b - a divisé par n, le nombre de sous-intervalles. Pour chaque sous-intervalle i = 1, 2, ..., n, soit θi le milieu de chaque sous-intervalle i. On peut alors construire un secteur circulaire où le centre est le pôle, de rayon r(θi), d'angle Δθ et de longueur d'arc r(θii) Δθ. La surface Si de chaque secteur est donc
- ,
et donc la surface totale de tous les secteurs est:
- .
Pour n tendant vers l'infini, l'approximation devient meilleure et cette somme est une somme de Riemann et donc converge vers l'intégrale demandée:
- .
Généralisation
En utilisant les coordonnées cartésiennes, un élément d'aire infinitésimale peut être calculé comme dA = dx dy. La règle du changement de variable pour des intégrales multiples stipule que, lorsque l'on utilise d'autres systèmes de coordonnées, le Jacobien de la matrice de conversion des coordonnées est:
- .
On peut donc voir qu'un élément d'aire infinitésimale peut être vu comme
- .
Maintenant une fonction donnée en coordonnées polaires peut être intégrée comme ceci
- .
Ici R est la même surface que plus haut, c'est-à-dire la surface comprise entre la courbe r(θ) et les demi-droites θ = a et θ = b.
La formule pour la superficie de R mentionnée plus haut est retrouvé en prenant f la fonction constante égale à 1. L'une des applications étonnantes de ces formules est le calcul de l'intégrale de Gauss .
Analyse vectorielle
L'analyse vectorielle peut être également appliquée aux coordonnées polaires. Soit le vecteur position (rcosθ,rsinθ), avec r et θ dépendants du temps t, et soit un vecteur unitaire de même direction que et un vecteur unitaire orthogonal à . Les dérivées première et seconde du vecteur position sont données par :
- ,
- .
Trois dimensions
Le système de coordonnées polaires peut être étendu à l'espace usuel à trois dimensions de deux manières, ce qui donne le système de coordonnées cylindriques et le système de coordonnées sphériques. Le concept des coordonnées cylindriques est de rajouter une coordonnée de distance, alors que le système sphérique rajoute une coordonnée angulaire.
Coordonnées cylindriques
Le système de coordonnées cylindriques est un système de coordonnées qui étend le système de coordonnées polaires à deux dimensions en y ajoutant une troisième dimension qui mesure la hauteur d'un point par rapport au plan repéré par les coordonnées polaires; de la même manière que l'on étend le système de coordonnées cartésiennes de deux à trois dimensions. La troisième coordonnée est souvent notée h ou z.
Les trois coordonnées cylindriques peuvent être converties en coordonnées cartésiennes par:
Coordonnées sphériques
Les coordonnées polaires peuvent aussi être étendues en utilisant les coordonnées (ρ, φ, θ), où ρ désigne la distance du point au pôle, φ est l'angle depuis l'axe des z (appelé colatitude ou zénith, compris entre 0 ° et 180 °) et θ est l'angle depuis l'axe des x (comme dans les coordonnées polaires, entre 0 ° et 360 °). Ce système de coordonnées est appelé système de coordonnées sphériques et il est similaire au système utilisé pour se repérer sur la surface de la Terre, où la latitude est le complémentaire de φ (c'est-à-dire 90 °-φ) et la longitude mesurée par θ--180 °.[16]
Les trois coordonnées sphériques peuvent être converties en coordonnées cartésiennes par:
Applications
Les coordonnées polaires sont bidimensionnelles et peuvent donc être uniquement utilisées dans les cas où les points sont dans un même plan. Elles sont plus appropriées dans tous les cas où le phénomène considéré est lié à une direction et une longueur d'un point central. Par exemple, les exemples de courbes polaires définies plus haut montrent comment on peut utiliser les coordonnées polaires pour produire des équations simples produisant ces courbes, comme la spirale d'Archimède. Ces mêmes équations en coordonnées cartésiennes seraient beaucoup plus compliquées. De plus, beaucoup d'études de systèmes physique, comme l'étude du pendule ou bien tout phénomène où des solides se meuvent autour d'un point central, sont simplifiées en passant en coordonnées polaires. L'introduction des coordonnées polaires s'est faite tout d'abord pour étudier les mouvements circulaires et les mouvements orbitaux.
Les coordonnées polaires sont souvent utilisées en navigation. En effet, un voyage peut être défini par une distance et un angle par rapport à la destination. Par exemple, les aéronefs utilisent un système de coordonnées polaires quelque peu modifié pour la navigation.
Modélisation
Les coordonnées polaires conduisent à une simplification du modèle des systèmes naturels dans lequel un point central joue un rôle particulier. C'est notamment le cas des système possédant une symétrie radiale qui sont invariants par rotation autour d'un point fixe.
C'est le cas des systèmes dits à force centrale, c'est à dire soumis à une force qui passe par un point fixe. les exemples classiques comprennent le problème à deux corps en champs gravitationnels et les systèmes possédant un point source, comme les antennes radioélectriques.
C'est aussi le cas des mouvements de rotation autour d'un point fixe comme le pendule simple, des surfaces d'équilibres autour d'un puit comme l'équation de flux d'eau du sol ou de la variation d'une grandeur en fonction d'un angle comme les polaires en aéronautique ou la directivité d'un microphone, qui caractérise la sensibilité du microphone en fonction de la provenance du son selon l'axe central du microphone.
Ce phénomène peut être représenté par une courbe polaire. La courbe pour un microphone cardioïde standard, le plus commun des microphones, a pour équation r = (1 + sin θ) / 2.[17]
Enfin, il existe des cas particuliers où le passage aux coordonnées polaires peut rendre service. Par exemple, la loi de Lapalace-Gauss en statistique a une distribution qui n'est intégrable au moyen de fonctions élémentaires. Toutefois, en faisant tourner cette courbe autour de l'axe des y on obtient une cloche infinie qui, exprimée en coordonnées polaires, est intégrable. C'est de cette façon que Gauss a pu normaliser cette loi statistique dont Laplace avait montré l'universalité.
Bibliographie
- Howard Anton, Calculus, Anton Textbooks, Inc., 2002 (ISBN 0-471-38157-8)
- Ross Finney, Calculus: Graphical, Numerical, Algebraic, Addison-Wesley Publishing Co., 1994 (ISBN 0-201-55478-X)
Notes et références
- ↑ a et b Richard G. Brown, Advanced Mathematics: Precalculus with Discrete Mathematics and Data Analysis, McDougal Littell, Evanston, Illinois, 1997 (ISBN 0-395-77114-5)
- ↑ Michael Friendly, « Milestones in the History of Thematic Cartography, Statistical Graphics, and Data Visualization ». Consulté le 10 septembre 2006
- ↑ C. B. Boyer, « Newton as an Originator of Polar Coordinates », dans American Mathematical Monthly, vol. 56, 1949, p. 73–78 [texte intégral]
- ↑ Jeff Miller, « Earliest Known Uses of Some of the Words of Mathematics ». Consulté le 10 septembre 2006
- ↑ David Eugene Smith, History of Mathematics, Vol II, Ginn and Co., 324 p.
- ↑ Julian Coolidge, « The Origin of Polar Coordinates », dans American Mathematical Monthly, vol. 59, 1952, p. 78–85 [texte intégral]
- ↑ Polar Coordinates and Graphing, 13 avril 2006. Consulté le 22 septembre 2006
- ↑ Theodore Lee, Precalculus: With Unit-Circle Trigonometry, Thomson Brooks/Cole, 2005 (ISBN 0534402305)
- ↑ Ian Stewart, Complex Analysis (the Hitchhiker's Guide to the Plane), Cambridge University Press, 1983 (ISBN 0521287634)
- ↑ Raymond A. Serway, Principles of Physics, Brooks/Cole—Thomson Learning (ISBN 0-534-49143-X)
- ↑ Bruce Follett Torrence, The Student's Introduction to Mathematica®, Cambridge University Press, 1999 (ISBN 0521594618)
- ↑ Johan Claeys, « Polar coordinates ». Consulté le 25 mai 2006
- ↑ Julius O. Smith, Mathematics of the Discrete Fourier Transform (DFT), W3K Publishing, 2003 (ISBN 0-9745607-0-7)
- ↑ Husch, Lawrence S., « Areas Bounded by Polar Curves ». Consulté le 2006-11-25
- ↑ Lawrence S. Husch, « Tangent Lines to Polar Graphs ». Consulté le 2006-11-25
- ↑ Frank Wattenberg, « Spherical Coordinates », 1997. Consulté le 2006-09-16
- ↑ John Eargle, Handbook of Recording Engineering, Springer, 2005 (ISBN 0387284702)
Voir aussi
Articles connexes
- harmonique sphérique
- Les angles d'Euler, une généralisation des coordonnées sphériques.
Liens et documents externes
- (en)spherical.pdf Une proposition pour unifier les notations polaires 2D et 3D.
- Portail de la géométrie
- Portail de la physique
Catégories : Bon article | Système de coordonnées | Cercle et sphère
Wikimedia Foundation. 2010.