- Géométrique
-
Géométrie
La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, aux figures de d'autres types d'espaces (géométrie projective, géométrie non euclidienne, par exemple). Certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle, et géométrie algébrique, par exemple.
Il est donc difficile de définir ce qu'est, aujourd'hui, la géométrie de manière à englober toutes ces géométries, l'unité de ces géométries étant dans leur origine historique plutôt que dans leurs méthodes ou leurs objets.
Sommaire
Étymologie
Le terme géométrie dérive du grec de γεωμέτρης (geômetrês) qui signifie « géomètre, arpenteur » et vient de γῆ (gê) (« terre ») et μέτρον (métron) « mesure »). Ce serait donc « la science de la mesure du terrain ».
Grandes divisions de la géométrie
Sans qualificatif particulier et sans référence à un contexte particulier (par opposition à la géométrie différentielle ou la géométrie algébrique), la géométrie ou encore géométrie classique englobe principalement :
- La géométrie euclidienne, qui est l'étude de l'espace usuel avec les notions de distance et d'angle ;
- La géométrie affine, qui est l'étude des points et des droites, mais sans les notions de distance et d'angle ;
- La géométrie projective, qui ajoute aux espaces de la géométrie affine des points à l'infini ;
- La géométrie non euclidienne, qui est une variation de la géométrie euclidienne, et qui est contraire à l'intuition usuelle, et qui comprend la géométrie hyperbolique et la géométrie elliptique, dont la géométrie sphérique.
Ces géométries peuvent être généralisées en faisant varier, le nombre de dimensions des espaces, en changent les corps des scalaires (ce qui généralise les nombres réels) ou donnant une courbure à l'espace.
La géométrie classique peut être axiomatisée ou étudiée de différentes façons (dans l'ordre historique) :
- La géométrie synthétique (ou géométrie pure), qui utilise une approche axiomatique ayant généralement comme données premières les points, les droites, les plans, ainsi que les relations qui les gouvernent et les grandeurs qui leurs sont associées ;
- La géométrie analytique, qui utilise les coordonnées et qui associe à chaque point des triplet (ou une suite de longueur donnée) d'éléments d'un corps ;
- L'algèbre linéaire, qui généralise la géométrie analytique en remplaçant l'utilisation des coordonnées par celle des espaces vectoriels abstraits ;
- Les représentations de groupe qui étudient les invariants sous une action de groupe, ce qui a permis à Felix Klein dans son programme d'Erlangen de classer les différents type de géométries classiques leur donnant une certaine unité.
Il y a d'autres branches des mathématiques qui sont issues de l'étude des figures des espaces euclidiens, mais qui étudient maintenant des espaces qui ne sont pas nécessairement euclidiens :
- La topologie ;
- La géométrie différentielle, qui utilise l'analyse, la topologie et l'algèbre linéaire, et qui étudie des espaces qui, localement, sont des espaces euclidiens, et sur lesquels on peut faire du calcul différentiel et du calcul intégral. La géométrie différentielle englobe la géométrie riemannienne et la géométrie symplectique ;
- La géométrie algébrique, qui utilise l'algèbre abstraite et la topologie et qui étudie des espaces qui, localement, sont des ensembles de points définis par des équations algébriques, tels les coniques et les quadriques ;
- La géométrie non commutative.
Les différents espaces de la géométrie classiques peuvent être étudiés par la topologie, la géométrie différentielle et la géométrie algébrique.
Conception de la géométrie
La géométrie admet de nombreuses acceptions selon les auteurs. Dans un sens strict, la géométrie est « l'étude des formes et des grandeurs de figures »[1]. Cette définition est conforme à l'émergence de la géométrie en tant que science sous la civilisation grecque durant l'époque classique. Selon un rapport de Jean-Pierre Kahane[2], cette définition coïncide avec l'idée que se font les gens de la géométrie comme matière enseignée : c'est « le lieu où on apprend à appréhender l'espace ».
Les questions posées durant le XIXe siècle ont conduit à repenser la notion de formes et d'espace, en écartant la rigidité des distances euclidiennes. Il été envisagé la possibilité de déformer continument une surface sans préserver la métrique induite, par exemple de déformer une sphère en un ellipsoïde. Étudier ces déformations a conduit à l'émergence de la topologie[réf. nécessaire] : ses objets d'étude sont des ensembles, les espaces topologiques, dont la notion de proximité et de continuité est définie "ensemblistiquement" par la notion de voisinage. Selon certains mathématiciens, la topologie fait pleinement partie de la géométrie, voire en est une branche fondamentale. Cette classification peut être remise en cause par d'autres.
Selon le point de vue de Felix Klein (1849 - 1925), la géométrie analytique « synthétisait en fait deux caractères ultérieurement dissociés : son caractère fondamentalement métrique, et l'homogénéité »[3]. Le premier caractère se retrouve dans la géométrie métrique, qui étudie les propriétés géométriques des distances. Le second est au fondement du programme d'Erlangen, qui définit la géométrie comme l'étude des invariants d'actions de groupe.
Les travaux actuels, dans des domaines de recherche portant le nom de géométrie, tendent à remettre en cause la première définition donnée. Selon Jean-Jacques Szczeciniarcz[4], la géométrie ne se construit pas sur « la simple référence à l'espace, ni même [sur] la figuration ou [sur] la visualisation » mais se comprend à travers son développement : « la géométrie est absorbée mais en même temps nous parait attribuer un sens aux concepts en donnant par ailleurs l'impression d'un retour au sens initial ». Jean-Jacques Sczeciniarcz relève deux mouvements dans la recherche mathématique qui a conduit à un élargissement ou à un morcellement de la géométrie :
- La procédure d'idéalisation consistant à montrer l'importance d'une structure en l'ajoutant aux objets mathématiques déjà étudiés ;
- Au contraire, la procédure de thématisation consistant à dégager une nouvelle structure sous-jacente à des objets géométriques déjà étudiés.
Dans le prolongement, la géométrie peut être abordée non plus comme une discipline unifiée mais comme une vision des mathématiques ou une approche des objets. Selon Gérhard Heinzmann[5], la géométrie se caractérise par « un usage de termes et de contenus géométriques, comme, par exemple, « points », « distance » ou « dimension » en tant que cadre langagier dans les domaines les plus divers », accompagné par un équilibre entre une approche empirique et une approche théorique.
Histoire
Article détaillé : Histoire de la géométrie.Géométrie classique
Pour Henri Poincaré[6], l’espace géométrique possède les propriétés suivantes:
- Il est continu
- Il est infini
- Il a trois dimensions
- Il est homogène, c’est-à-dire que tous ses points sont identiques entre eux
- Il est isotrope, c’est-à-dire que toutes les droites qui passent par un même point sont identiques entre elles.
Les géométries euclidienne et non euclidienne correspondent à cette définition stricto sensu de l'espace. Construire une telle géométrie consiste à énoncer les règles d'agencement des quatre objets fondamentaux le point, la droite, le plan et l'espace. Ce travail reste l'apanage de la géométrie pure qui est la seule à travailler ex nihilo.
Géométrie plane
La géométrie plane repose d'abord sur une axiomatique qui définit l'espace ; puis sur des méthodes d'intersections, de transformations et de constructions de figures (triangle, parallélogramme, cercle, sphère, etc.).
La géométrie projective est la plus minimaliste, ce qui en fait un tronc commun[7] pour les autres géométries. Elle est fondée sur des axiomes
- d'incidence (ou d'appartenance) dont la caractéristique la plus notable (et la plus singulière) est : « Deux droites coplanaires possèdent un unique point commun. »
- d'ordre : permet notamment d'ordonner les points d'une droite. De ce point de vue, une droite projective s'apparente à un cercle car deux points définissent deux segments.
- de continuité : Ainsi, dans tout espace géométrique, l'on peut joindre un point à un autre par un cheminement continu. En géométrie euclidienne, cette axiome est l'axiome d'Archimède.
- Parallélisme
Distinguer dans la géométrie projective des éléments impropres caractérise la géométrie arguésienne. Puis la géométrie affine nait de l'élimination de ces éléments impropres. Cette suppression de points crèe la notion de parallélisme puisque désormais certaines paires de droites coplanaires cessent d'intersecter. Le point impropre supprimé est assimilable à la direction ces droites. De plus, deux points ne définissent plus qu'un segment (celui des deux qui ne contient pas le point impropre) et rend familière la notion de sens ou orientation (c'est à dire, cela permet de distinguer de [8]).
- Congruence
- Géométries euclidienne et non-euclidiennes
Le cinquième axiome ou « postulat de parallèles » de la géométrie d'Euclide fonde la géométrie euclidienne :
Par un point extérieur à une droite, il passe toujours une parallèle à cette droite, et une seule.
Voir l'axiomatique de Hilbert ou les Éléments d'Euclide pour des énoncés plus complet de la géométrie euclidienne.
Article détaillé : Géométrie euclidienne.La réfutation de ce postulat à conduit à l'élaboration de deux géométries non euclidiennes : la géométrie hyperbolique par Gauss, Lobatchevsky, Bolyai et la géométrie elliptique par Riemann.
Article détaillé : Géométrie non euclidienne.Géométrie analytique
La géométrie analytique est la plus familière. Elle repose sur le principe de base que toute droite est assimilable à une représentation (une image) de l'ensemble des réels (ou plus largement, d'un corps. L'espace est alors décomposable en sous-espaces et un point est définissable par des coordonnées. Il s'ensuit que toute figure est déterminée par un système d'équations et/ou d'inéquations. Par exemple, une courbe est la représentation d'une fonction. L'on voit ainsi que cette approche, issue de l'algèbre linéaire et basée sur la notion d'espace vectoriel, est à un pont entre la géométrie et l'analyse.
Cette géométrique est conforme à la géométrie pure dans le sens où l'espace vectoriel permet de construire des modèles de géométries (en tant qu'objets mathématiques).
Article détaillé : Géométrie analytique.Programme d'Erlangen
Dans la conception de Felix Klein (auteur de programme d'Erlangen), la géométrie est l'étude des espaces de points sur lesquels opèrent des groupes de transformations (appelées aussi symétries) et des quantités et des propriétés qui sont invariantes pour ces groupes.
Parmi les transformations les plus connues, on retrouve les isométries, les similitudes, les rotations, les réflexions, les translations et les homothéties.
Il ne s'agit donc pas d'une discipline mais d'un important travail de synthèse qui a permis une vision claire des particularités de chaque géométrie. Ce programme caractérise donc plus la géométrie qu'il ne la fonde. Il eut un rôle médiateur dans le débat sur la nature des géométries non-euclidiennes et la controverse entre géométries analytique et synthétique.
Article détaillé : Programme d'Erlangen.Domaines de recherche relevant de la géométrie
Géométrie riemannienne
Article détaillé : Géométrie riemannienne.La géométrie riemannienne peut être vue comme une extension de la géométrie euclidienne. Son étude porte sur les propriétés géométriques d'espaces (variétés) présentant une notion de vecteurs tangents, et équipés d'une métrique (métrique riemannienne) permettant de mesurer ces vecteurs. Les premiers exemples rencontrés sont les surfaces de l'espace euclidien de dimension 3 dont les propriétés métriques ont été étudiées par Gauss dans les années 1820. Le produit euclidien induit une métrique sur la surface étudiée par restriction aux différents plans tangents. La définition intrinsèque de métrique fut formalisée en dimension supérieure par Riemann. La notion de transport parallèle autorise la comparaison des espaces tangents en deux points distincts de la variété : elle vise à transporter de manière cohérente un vecteur le long d'une courbe tracée sur la variété riemannienne. La courbure d'une variété riemannienne mesure par définition la dépendance éventuelle du transport parallèle d'un point à un autre par rapport à la courbe les reliant.
La métrique donne lieu à la définition de la longueur des courbes, d'où dérive la définition de la distance riemannienne. Mais les propriétés métriques des triangles peuvent différer de la trigonométrie euclidienne. Cette différence est en partie étudiée à travers le théorème de comparaison de Toponogov, qui permet de comparer du moins localement la variété riemannienne étudiée à des espaces modèles, selon des inégalités supposées connues sur la courbure sectionnelle. Parmi les espaces modèles :
- L'espace euclidien est une variété riemannienne de courbure nulle ;
- La sphère de dimension n sont une variété riemannienne de courbure positive constante 1 ;
- L'espace hyperbolique de dimension n est une variété riemannienne de courbure négative -1.
Géométrie complexe
Article détaillé : Géométrie complexe.La géométrie complexe porte sur les propriétés d'espaces pouvant localement s'identifier à . Ces objets (variété complexe) présentent une certaine rigidité, découlant de l'unicité d'un prolongement analytique d'une fonction à plusieurs variables.
Géométries symplectique et de contact
Articles détaillés : Géométrie symplectique et Géométrie de contact.La géométrie symplectique peut être introduite comme une généralisation en dimension supérieure de la notion d'aire rencontrée en dimension 2. Tout comme la géométrie complexe, ses objets étudiés, les variétés symplectiques, sont suffisamment rigides
Géométries discrète et convexe
Articles détaillés : Géométrie discrète et Géométrie convexe.Géométries algébrique et arithmétique
Articles détaillés : Géométrie algébrique et Géométrie arithmétique.Géométrie non commutative
Article détaillé : Géométrie non commutative.Applications de la géométrie
Longtemps, géométrie et astronomie ont été liées. À un niveau élémentaire, le calcul des tailles de la lune, du Soleil et de leurs distances respectives à la Terre fait appel au théorème de Thalès[réf. nécessaire]. Dans les premiers modèles du système solaire, à chaque planète était associé un solide platonicien. Depuis les observations astronomiques de Kepler, confirmées par les travaux de Newton, il est prouvé que les planètes suivent une orbite elliptique dont le Soleil constitue un des foyers. De telles considérations de nature géométrique peuvent intervenir couramment en mécanique classique pour décrire qualitativement les trajectoires.
En ce sens, la géométrie intervient en ingénierie dans l'étude de la stabilité d'un système mécanique. Mais elle intervient encore plus naturellement dans le dessin industriel. Le dessin industriel montre les coupes ou les projections d'un objet tridimensionnel, et est annoté des longueurs et angles. C'est la première étape de la mise en place d'un projet de conception industrielle. Récemment, le mariage de la géométrie avec l'informatique a permis l'arrivée de la conception assistée par ordinateur (CAO), des calculs par éléments finis et de l'infographie.
La trigonométrie euclidienne intervient en optique pour traiter par exemple de la diffraction de la lumière. Elle est également à l'origine du développement de la navigation : navigation maritime aux étoiles (avec les sextants), cartographie, navigation aérienne (pilotage aux instruments à partir des signaux des balises).
Les nouvelles avancées en géométrie au XIXe siècle trouvent des échos en physique. Il est souvent dit que la géométrie riemannienne a été initialement motivée par les interrogations de Gauss sur la cartographie de la Terre. Elle rend compte en particulier de la géométrie des surfaces dans l'espace. Une de ses extensions, la géométrie lorentzienne, a fourni le formalisme idéal pour formuler les lois de la relativité générale. La géométrie différentielle trouve de nouvelles applications dans la physique post-newtonienne avec la théorie des cordes ou des membranes.
La géométrie non commutative, inventée par Alain Connes, tend à s'imposer pour présenter les bonnes structures mathématiques avec lesquelles travailler pour mettre en place de nouvelles théories physiques.
Enseignement de la géométrie
La géométrie occupe une place privilégiée dans l'enseignement des mathématiques. De nombreuses études pédagogiques prouvent son intérêt[réf. nécessaire] : elle permet aux élèves de développer une réflexion sur des problèmes, de visualiser des figures du plan et de l'espace, de rédiger des démonstrations, de déduire des résultats d'hypothèses énoncées. Mais plus encore, « le raisonnement géométrique est beaucoup plus riche que la simple déduction formelle », car il s'appuie sur l'intuition née de l'« observation des figures ».
Dans les années 1960, l'enseignement des mathématiques en France insistait sur la mise en pratique des problèmes relevant de la géométrie dans la vie courante. En particulier, le théorème de Pythagore était illustré par la règle du 3,4,5 et son utilisation en charpenterie[réf. nécessaire]. Les involutions, les divisions harmoniques, et les birapports étaient au programme du secondaire. Mais la réforme des mathématiques modernes, née aux États-Unis, et adaptée en Europe, a conduit à réduire considérablement les connaissances enseignées en géométrie pour introduire de l'algèbre linéaire dans le second degré. Dans de nombreux pays, cette réforme fut fortement critiquée et désignée comme responsable d'échecs scolaires[réf. nécessaire]. Un rapport de Jean-Pierre Kahane dénonce le manque d'« une véritable réflexion didactique préalable » sur l'apport de la géométrie : en particulier, une « pratique de la géométrie vectorielle » prépare l'élève à une meilleure assimilation des notions formelles d'espace vectoriel, de forme bilinéaire[réf. nécessaire], ...
L'utilisation des figures dans l'enseignement d'autres matières permet de mieux faire comprendre aux élèves les raisonnements exposés[réf. nécessaire].
Références
Ouvrages
- Amy Dahan-Dalmedico, Jeanne Peiffer, Une histoire des mathématiques., Seuil-sciences, 1986.
- Jean-Paul Collette, Histoire des mathématiques, vol. 2, Vuibert, 1979 (ISBN 2-7613-0118-8)
- (fr) et (en) Joseph Kouneiher, Dominique Flament, Philippe Nabonnand, Jean-Jacques Szczeciniarz (dir.), Géométrie au XXe siècle : histoire et horizons [détail des éditions]
- (fr) Jean-Pierre Kahane (ed.), L'enseignement des sciences mathématiques : Commission de réflexion sur l'enseignement des mathématiques [détail des éditions]
Notes et références
- ↑ Fritz Reinhardt et Heinrich Soeder, Atlas des mathématiques, Livre de Poche, p. 13.
- ↑ (fr) Jean-Pierre Kahane (ed.), L'enseignement des sciences mathématiques : Commission de réflexion sur l'enseignement des mathématiques [détail des éditions], Chapitre 3, La Géométrie, p. 92.
- ↑ Alain Michel, Géométrisation de la théorie physique : sur la genèse d'un problème. Dans (fr) et (en) Joseph Kouneiher, Dominique Flament, Philippe Nabonnand, Jean-Jacques Szczeciniarz (dir.), Géométrie au XXe siècle : histoire et horizons [détail des éditions]
- ↑ Jean-Jacques Szczeciniarz, Philosophie et géométrie : la montée de la géométrie, ses effets philosophiques. Dans (fr) et (en) Joseph Kouneiher, Dominique Flament, Philippe Nabonnand, Jean-Jacques Szczeciniarz (dir.), Géométrie au XXe siècle : histoire et horizons [détail des éditions].
- ↑ Gérhard Heinzmann, La géométrie et le principe d'idonéité : une relecture de Ferdinand Gonseth. Dans (fr) et (en) Joseph Kouneiher, Dominique Flament, Philippe Nabonnand, Jean-Jacques Szczeciniarz (dir.), Géométrie au XXe siècle : histoire et horizons [détail des éditions].
- ↑ Henri Poincaré, La science est l'hypothèse, Champs Flammarion, 1902
- ↑ jusqu'à une certaine limite car certaines géométries n'entrent pas dans ce cadre.
- ↑ Dans une certaine mésure et grossièrement, cela permet également de distinguer de ; l'intérieur de l'extérieur.
- Portail de la géométrie
Catégorie : Géométrie
Wikimedia Foundation. 2010.