Brachistochrone

Brachistochrone

Courbe brachistochrone

Le mot brachistochrone désigne une courbe dans un plan vertical sur laquelle un point matériel pesant placé dans un champ de pesanteur uniforme, glissant sans frottement et sans vitesse initiale, présente un temps de parcours minimal parmi toutes les courbes joignant deux points fixés : on parle de problème de la courbe brachistochrone.

Brachistochrone.gif

Sommaire

Étymologie

Le mot brachistochrone vient du grec brakhisto (« le plus court ») et s'écrit donc avec un i et non un y, et de chronos (« temps »). Elle fut étudiée et nommée ainsi par Jean Bernoulli.

Histoire

La résolution du problème de la courbe brachistochrone passionna les mathématiciens[1]. Il apparaît en 1633 chez Galilée qui crut que la solution consistait en un arc de cercle[2]. Jean Bernoulli pose clairement le problème en 1696 dans les Acta Eruditorum, et des solutions furent apportées par lui-même ainsi que par son frère Jacques Bernoulli[3], Newton, Leibniz, L'Hôpital et Tschirnhaus : il s'agit d'un arc de cycloïde commençant avec une tangente verticale.

Les méthodes imaginées pour sa résolution amenèrent à développer la branche des mathématiques qu'on appelle le calcul des variations.

Démonstration de la solution

Démonstration historique (par Jean Bernoulli)

Le chemin le plus court entre deux points est celui que suivrait un rayon de lumière. La courbe brachistochrone est donc simplement le trajet suivi par la lumière dans un milieu où la vitesse augmente selon une accélération constante (l’attraction terrestre g). La loi de la conservation de l’énergie permet d’exprimer la vitesse d’un corps soumis à l’attraction terrestre par:

v=\sqrt{2gh},

h représente la perte d’altitude par rapport au point de départ.

La loi de la réfraction, selon le principe de Fermat, indique que tout au long de sa trajectoire un rayon lumineux obéit à la règle

\frac{\sin{\theta}}{v}= \mathrm{Cste},

θ représente l’angle par rapport à la verticale. En insérant dans cette formule l’expression de la vitesse trouvée plus haut, on constate immédiatement deux choses:

1- Au point de départ, lorsque la vitesse est nulle, l’angle doit nécessairement être nul. Donc la courbe brachistochrone est tangente à la verticale à l’origine.

2- La vitesse est bornée car le sinus ne peut être supérieur à 1. Cette vitesse maximum est atteinte quand la particule (ou le rayon) passe par l’horizontale.

Sans restreindre la généralité du problème, on va supposer que la particule part du point de coordonnées (0,0) et que la vitesse maximum est atteinte à l’altitude –D. La loi de la réfraction s’exprime alors par:

\frac{\sin{\theta}}{\sqrt{-2gy}}=\frac{1}{\sqrt{2gD}}.

Sachant que la particule se déplace sur une courbe, on a la relation :

\sin{\theta}=\frac{dx}{\sqrt{dx^2+dy^2}}.

En insérant cette expression dans la formule précédente et en réarrangeant les termes on trouve:

(1 + y'2)y = − D.

Ce qui est l’équation différentielle de l’opposée d’une cycloïde, générée par un cercle de diamètre D.

Démonstration avec le calcul des variations

Brachi.PNG

Soit y = f(x) l'équation cartésienne de la courbe (on exclut les courbes ayant des parties verticales), y étant dirigé vers le haut, et la courbe commençant à l'origine. On exprime un déplacement infinitesimal sur la courbe:

ds = \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + {y'}^2}dx.

Mais, d'autre part, on a toujours, en vertu du théorème de l'énergie cinétique, la relation suivante :

v = \frac{ds}{dt} = \sqrt{-2gy}.

On peut alors exprimer le temps de parcours infinitésimal dt:

dt = \sqrt{\frac{1+{y'}^2}{-2gy}} dx.

Donc T = \int_{x_a}^{x_b}\sqrt{\frac{1+{y'}^2}{-2gy}} dxa, avec T le temps de parcours (à minimiser), xa et xb les abscisses de départ et d'arrivée.

Il s'agit donc de trouver le minimum de la fonctionnelle F : y\mapsto \int_{x_a}^{x_b}\sqrt{\frac{1+{y'}^2}{-2gy}} dx. Les extrema d'une telle fonctionnelle F : y\mapsto \int_{x_a}^{x_b} L(x,y,y') dx sont donnés par l'équation d'Euler-Lagrange.

La fonctionnelle ne dépendant pas directement de x, la formule de Beltrami est ici directement applicable, à savoir L-y'\frac{dL}{dy'} = k avec k une constante arbitraire, ce qui donne ici:

\sqrt{\frac{1+{y'}^2}{-2gy}}-\frac{{y'}^2}{\sqrt{-2gy(1+{y'}^2)}}=k

Après multiplication des deux membres par \sqrt{-2gy(1+{y'}^2)} et simplification, on obtient que y est un extrema de F si :

\frac{1}{\sqrt{-2gy(1+{y'}^2)}}=k.

On obtient donc l'équation différentielle (1 + y'2)y = Cste, où la constante n'est autre que -D, altitude minimale atteinte par le point mobile.

Résolution de l'équation différentielle et solution

Pour résoudre (1 + y'2)y = − D, on procède au changement de variable suivant:

y'= - \operatorname{cotan}\left( \frac{\theta}{2} \right).

Dans ce cas, on obtient l'équation paramétrique de la courbe solution:

x(\theta) = \frac{D}{2} \left(\theta - \sin(\theta)\right),
y(\theta) = - \frac{D}{2} \left(1 - \cos(\theta)\right)

Il s'agit d'une cycloïde renversée, sous sa forme paramétrée :

Cycloid animated.gif

Voir aussi

Liens externes

Notes et références

  1. Émilie du Châtelet écrivit à ce sujet, dans Les institutions de physique (1740) : « §468. Le problème de la ligne de la plus vite descente d'un corps tombant obliquement à l'horizon par l'action de la pesanteur d'un point donné à un autre point donné, est fameux par l'erreur du grand Galilée, qui a cru que cette ligne était un arc de cercle, et par les différentes solutions que les plus grands géomètres de l'Europe en ont donné »
  2. Galilée, Discours concernant deux sciences nouvelles, (th. XXII, prop. XXXVI), (1633), rééd. PUF, 1995, p.199 : « Il semble possible de conclure que le mouvement le plus rapide entre deux points n'a pas lieu le long de la ligne la plus courte, c'est-à-dire le long d'une droite, mais le long d'un arc de cercle ».
  3. Le problème de la brachistochrone est à l'origine d'une brouille entre les deux frères Bernoulli, Jacques, estimant sa propre solution meilleure que celle de Jean et ayant lancé à son frère le défi de résoudre le problème dans un cadre plus général.
  • Portail de la géométrie Portail de la géométrie
Ce document provient de « Courbe brachistochrone ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Brachistochrone de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Brachistochrone — Brachistochrone. Zwischen zwei Punkten A und B verschiedener Höhe über der Horizontalebene lassen sich unendlich viele Kurven ziehen, die ein schwerer Punkt durchlaufen kann. Die Brachistochrone ist diejenige von allen, auf welcher der schwere… …   Lexikon der gesamten Technik

  • Brachistochrŏne — (gr.), die krumme Linie, in welcher ein von seiner eigenen Schwere fortbewegter Körper fällt, wenn er von einem höheren Punkte zu einem nicht senkrecht unter ihm liegenden Punkte in kürzester Frist gelangen soll. Eine B. ist demgemäß eine durch… …   Pierer's Universal-Lexikon

  • Brachistochrōne — (griech., »Linie des kürzesten Falles«), unter allen Kurven, die man zwischen zwei in verschiedenen Höhen liegenden Punkten A und B ziehen kann, diejenige, auf der ein vermöge der Schwere herabfallender Körper in kürzerer Zeit von A nach B… …   Meyers Großes Konversations-Lexikon

  • Brachistochrone —   [zu griechisch brachýs »kurz« und chrónos »Zeit«] die, / n, Kurve zwischen zwei Punkten P1 und P2, auf der ein reibungslos gleitender Massenpunkt unter dem Einfluss der als konstant angenommenen Schwerkraft in kürzester Zeit von P1 nach …   Universal-Lexikon

  • Brachistochrone — Experiment: Welche Bahn ist die schnellste? (Ausstellung Elementa im Landesmuseum für Technik und Arbeit, Mannheim) Brachis …   Deutsch Wikipedia

  • brachistochrone — (bra ki sto cro n ) s. f. Terme de géométrie. Courbe que doit suivre un corps pesant pour parvenir d un point à un autre dans le moins de temps possible. ÉTYMOLOGIE    Mot grec, venant de deux mots signifiant l un, le plus court, et l autre,… …   Dictionnaire de la Langue Française d'Émile Littré

  • Brachistochrone curve — A Brachistochrone curve (Gr. βραχίστος, brachistos the shortest, χρόνος, chronos time), or curve of fastest descent, is the curve between two points that is covered in the least time by a point like body that starts at the first point with zero… …   Wikipedia

  • brachistochrone — brachistochronic /breuh kis teuh kron ik/, brachistochronous /bray keuh stok reuh neuhs, brak euh /, adj. /breuh kis teuh krohn /, n. Mech. the curve between two points that in the shortest time by a body moving under an external force without… …   Universalium

  • brachistochrone — noun A cycloid; the curve of fastest descent between two points …   Wiktionary

  • Brachistochrone — Bra|chis|to|chro|ne [braxisto kro:nə] die; , n <zu gr. bráchistos »kürzeste« u. chrónos »Zeit«> Kurve, auf der ein der Schwerkraft unterworfener Massenpunkt bzw. Körper am schnellsten zu einem tiefer gelegenen Punkt gelangt (Phys.) …   Das große Fremdwörterbuch

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”