- Histoire Des Fonctions Trigonométriques
-
Histoire des fonctions trigonométriques
L'histoire des fonctions trigonométriques semble avoir débuté il y a environ 4 000 ans. Nous savons de façon certaine que les Babyloniens déterminaient des approximations de mesures d'angles ou de longueurs de côtés de triangles rectangles. Plusieurs tables de nombres gravés sur de l'argile séchée en témoignent. Une tablette babylonienne écrite en cunéiforme, nommée Plimpton 322 (environ 1900 av. J.-C.) montre quinze triplets pythagoriciens et une colonne de nombres, qui peut être interprétée comme une table de sécantes[1]. Il y a cependant de nombreux débats à ce sujet pour savoir s'il s'agit bien d'une table trigonométrique.
Sommaire
Premières utilisations des fonctions simples
L'utilisation la plus ancienne du sinus apparaît dans le Sulba Sutras écrit en indien ancien entre le VIIIe siècle av. J.-C. et le VIe siècle av. J.-C., dans lequel la valeur du sinus de π/4 (45°) y est correctement calculé comme égal à 1/√2 avec une procédure pour cercler un carré (l'inverse de quadrer un cercle), bien que les indiens n'eussent pas encore développé la notion de sinus dans un sens général [2].
Les fonctions trigonométriques furent étudiées plus tard par Hipparque de Nicée (-180--125), qui inscrivit dans des tables les longueurs des arcs de cercle (angle A multiplié par le rayon r) ainsi que les longueurs des cordes sous-tendues (2rsin(A / 2)) [3].
Formules sur les fonctions trigonométriques
Plus tard, Ptolémée en Égypte IIe siècle poursuivit ce travail dans son Almageste, en développant les formules d'addition et de soustraction équivalentes à celles donnant sin(A + B) et cos(A + B). Ptolémée établit une formule équivalente à la formule d'angle moitié sin2(A / 2) = (1 − cosA) / 2 et créa une table de ses résultats. Aucune des tables d'Hipparque ou de Ptolémée ne survécurent jusqu'à ce jour, mais les descriptions faites par d'autres auteurs antiques ne laissent que peu de doute quant à leur existence[4].
En Inde
Les développements significatifs de la trigonométrie suivant furent réalisés en Inde. L'astronome et mathématicien indien Aryabhata (476 – 550), dans son ouvrage Aryabhata-Siddhanta, définit pour la première fois le sinus (moderne) à partir de la relation entre la moitié d'un angle et la moitié d'une corde, tout en définissant également le cosinus, le contre-sinus (ou sinus verse), et l'inverse du sinus. Ses travaux contiennent aussi les tables les plus anciennes existant actuellement des valeurs du sinus et du contre-sinus (1 − cosinus), de tous les angles compris entre 0° et 90° à intervalles de 3,75°, avec une précision de 4 décimales. Il employait les mots jya pour le sinus, kojya pour le cosinus, ukramajya pour le contre-sinus, et otkram jya pour l'inverse du sinus. Les mots jya et kojya auraient pu devenir par la suite sinus et cosinus respectivement après une erreur de traduction.
Notre sinus moderne est dérivé du mot latin sinus qui signifie « compartiment » ou « pli », venant d'une traduction erronée (par l'intermédiaire de l'arabe), du mot Sanskrit jiva, aussi écrit jya[3]. Aryabhata employait le mot ardha-jiva (demi-corde), qui fut abrégé en jiva, puis transcrit avec des caractères différents par les Arabes en jiba (جب). Des traducteurs européens comme Robert de Chester et Gérard de Crémone de Tolède au XIIe siècle confondirent jiba avec jaib (جب), qui désigne un « compartiment », probablement parce que jiba (جب) et jaib (جب) sont écrits de la même façon dans le manuscrit arabe (ce système d'écriture, dans une de ses formes, ne fournit pas au lecteur toutes les informations sur les voyelles).
D'autres mathématiciens indiens poursuivirent les travaux d'Aryabhata en trigonométrie. Varahamihira établit les formules sin2x + cos2x = 1, sin x = cos(π/2 − x), et (1 − cos(2x))/2 = sin2x. Bhaskara I produisit une formule pour calculer le sinus d'un angle aigu sans utilisation de table. Brahmagupta trouva la formule 1 − sin2x = cos2x = sin2(π/2 − x), et la formule dite d'interpolation de Brahmagupta permettant de calculer les valeurs du sinus, qui apparaît comme un particulier de la formule d'interpolation de Newton–Stirling au deuxième ordre.
Monde arabe et musulman
Les travaux indiens furent traduits plus tard et furent améliorés par les mathématiciens islamiques. Le mathématicien perse Muhammad ibn Mūsā al-Khuwārizmī produisit des tables des sinus et des tangentes, et apporta aussi sa contribution à la trigonométrie sphérique. Vers le Xe siècle, d'après l'œuvre d'Abu l-Wafa, il apparaît que les mathématiciens musulmans employaient chacune des six fonctions trigonométriques, et disposaient de tables à intervalles de 0,25°, avec 8 décimales exactes, ainsi que des tables de valeurs de la fonction tangente. Abu l-Wafa produisit également la formule trigonométrique sin 2x = 2 sin x cos x. Le mathématicien perse Omar Khayyam résolut les équations cubiques en employant des solutions numériques approximatives obtenues par interpolation dans des tables trigonométriques.
Tous ces premiers travaux ont traité principalement la trigonométrie comme un complément de l'astronomie ; il est possible que le mathématicien indien Bhaskara II et le mathématicien perse Nasir al-Din Tusi fussent les premiers à avoir considéré la trigonométrie comme un sujet d'étude. Ils énoncèrent aussi la loi des sinus et énumérèrent les six types de triangles droits en trigonométrie sphérique. Regiomontanus fut peut-être le premier mathématicien d'Europe à considérer la trigonométrie comme une autre discipline mathématique, dans son ouvrage De triangulis omnimodus écrit en 1464, et aussi dans le suivant Tabulae directionum où il utilisa la fonction tangente, sans la nommer.
Au XIIIe siècle, le mathématicien perse Nasir al-Din Tusi énonça la loi des sinus et en apporta une preuve. Dans le travail du mathématicien perse Ghiyath al-Kashi (XIVe siècle), se trouvent des tables trigonométriques donnant des valeurs de la fonction sinus avec quatre chiffres après la virgule dans le système sexagésimal (ce qui correspond à 8 décimales exactes dans le système de numération décimal) à partir de 1 degré à intervalle de 1/60°. Le mathématicien timouride Ulugh Beg (XIVe siècle) présenta des tables de sinus et de tangentes correctes à 8 décimales après la virgule.
Développements ultérieurs
Madhava (vers 1400) au sud de l'Inde accomplit des avancées en analyse dans l'étude des fonctions trigonométriques et leurs développements en séries infinies. Il développa les concepts de séries entières et de séries de Taylor, et produisit les développements en séries trigonométriques de sinus, cosinus, tangente et arc tangente. En utilisant les approximations en série de Taylor du sinus et du cosinus, il forma une table de sinus avec douze décimales exactes et une table de cosinus à neuf décimales exactes. Il donna des développements en série de π, π/4, du rayon, du diamètre, de la circonférence et de l'angle θ en termes de fonctions trigonométriques. Ses travaux furent poursuivis par ses disciples à l'école de Kerala jusqu'au seizième siècle[5].
Le traité Opus palatinum de triangulis de Georg Joachim Rheticus, un élève de Copernic, fut probablement le premier ouvrage dans lequel les fonctions trigonométriques étaient définies directement en termes de triangles rectangles au lieu de cercles, et où figuraient des tables des six fonctions trigonométriques ; ce traité fut achevé en 1596 par Valentin Otho un élève de Rheticus.
Formules de de Moivre et d'Euler
Articles détaillés : Formule de de Moivre et Formule d'Euler.Suite aux travaux de Cardan, les racines de nombres négatifs s'imposent dans les calculs en Europe. Ces nombres "imaginaires" ou "inconcevables" deviendront nos nombres complexes. Dans un premier temps, les mathématiciens européens remarquent des formules remarquables faisant intervenir l'unité imaginaire i (à l'époque noté ). Entre autres, les formules sur cos(x + y) et sin(x + y) obtenues par Ptolémée se résument avantageusement par la formule
- .
Cette égalité implique la formule de de Moivre. Pressenti par de Moivre en 1730, ce travail fut rédigé par Euler dans l'ouvrage Introductio in analysin infinitorum (1748). Il fut en grande partie à l'origine des considérations analytiques des fonctions trigonométriques en Europe en les définissant à partir de développements en séries, et présenta la formule d'Euler:
- eix = cos(x) + i sin(x).
Euler employa les abréviations modernes sin., cos., tang., cot., sec., et cosec.
Brook Taylor définit les séries de Taylor générales et donna les développements en séries et des approximations de chacune des six fonctions trigonométriques. Les travaux de James Gregory et Colin Maclaurin furent aussi très influents dans le développement des séries trigonométriques.
Le Cours d'Analyse de Cauchy enseigné à l'Ecole Polytechnique a permis de rendre plus rigoureux l'analyse et en particulier de donner un sens à la somme d'une série entière. Avec Cauchy, les travaux cités peuvent rigoureusement être justifiés. Aujourd'hui, dans l'enseignement supérieur, les fonctions cosinus et sinus sont obtenues comme parties réelle et imaginaire de l'exponentielle complexe obtenue comme somme d'une série entière. Les formules de Ptolémée découlent alors des propriétés de l'exponentielle (présentation à contre-sens historique).
Notes
Voir aussi
Lien externe
- (en) Elie Maor, Trigonometric Delights, Princeton University Press, Princeton, USA, 2002, 6 x 9 in, 256 p. (ISBN 0-691-09541-7) [présentation en ligne].
présente de multiples documents sur l'histoire de la trigonométrie
Références
- Boyer, Carl B., A History of Mathematics, John Wiley & Sons, Inc., 2nd edition. (1991). ISBN 0-471-54397-7. (en)
- Joseph, George G., The Crest of the Peacock: Non-European Roots of Mathematics, 2nd ed. Penguin Books, London. (2000). ISBN 0-691-00659-8. (en)
- (en) John J. O'Connor et Edmund F. Robertson, Trigonometric functions, MacTutor History of Mathematics archive.
- (en) John J. O'Connor et Edmund F. Robertson, Madhava of Sangamagramma, MacTutor History of Mathematics archive. (consulté en 2000)
- Portail des mathématiques
Catégories : Histoire de l'analyse | Trigonométrie | Nombre complexe
Wikimedia Foundation. 2010.