- Objet stellaire
-
Étoile
Pour les articles homonymes, voir Étoile (homonymie).Une étoile est une boule gazeuse dont la taille (plusieurs centaines de milliers de kilomètres) et la densité sont telles que la région centrale — le cœur — atteint la température nécessaire (de l'ordre du million de kelvins au minimum) à l'amorçage de réactions de fusion nucléaire. Une étoile génère donc un rayonnement, au contraire de la plupart des planètes[Note 1] (comme la Terre) qui ne font que recevoir l'énergie de l'étoile ou des étoiles autour desquelles elles gravitent. Pendant une grande partie de sa vie, avant que ses ressources d'énergie ne s'épuisent, une étoile est en équilibre hydrostatique sous l'action de deux forces qui s'opposent : la gravitation, qui tend à faire s'effondrer l'étoile, et la pression de radiation due aux réactions de fusion nucléaire, qui tend au contraire à faire exploser l'astre. Le Soleil est lui-même une étoile assez typique dont la masse, de l'ordre de 2×1030 kg, est représentative de celle des autres étoiles.
Sommaire
Généralités
Une étoile est un objet céleste en rotation, de forme approximativement sphérique car la rotation entraine un aplatissement aux pôles, et dont la structure est modelée par la gravité. Lors de sa formation, une étoile est essentiellement composée d’hydrogène et d’hélium. Durant la majeure partie de son existence, son cœur est le siège de réactions de fusion nucléaire, dont une partie de l’énergie est rayonnée sous forme de lumière visible ; la matière qui la compose s’en trouve presque complètement ionisée du fait de la température élevée qui règne en son sein.
Le Soleil est l’étoile la plus proche de la Terre, l’énergie qu’il rayonne y permet le développement de la vie. Il apparaît bien plus lumineux que toutes les autres étoiles en raison de sa proximité : la seconde étoile la plus proche de la Terre, Proxima du Centaure, est 250 000 fois plus éloignée. Sauf cas exceptionnel, les autres étoiles ne sont visibles que la nuit, sous la forme de points lumineux, lorsque leur éclat n’est pas noyé par celui du Soleil.
Les étoiles sont regroupées au sein de galaxies. Une galaxie typique, comme la nôtre, la Voie lactée, contient plusieurs centaines de milliards d’étoiles. Au sein des galaxies, les étoiles peuvent être liées dans des systèmes multiples (quelques étoiles) ou des amas (plusieurs dizaines à quelques centaines de milliers d’étoiles). La sphère céleste fait également apparaitre des groupements d’étoiles appelés constellations ; il s’agit en fait d’une illusion due à l’effet de projection, les étoiles les composant étant généralement situées à des distances de la Terre très différentes.
Une étoile possède une masse comprise entre 0,07 et environ 150 fois celle du Soleil (elle-même égale à 300 000 fois celle de la Terre, soit environ 2×1030 kg). Les astres de masse plus faible ne permettent pas l’amorçage des réactions de fusion nucléaire de l’hydrogène, alors que les étoiles de masse plus élevée sont sujettes à des instabilités entraînant une perte de masse. La durée de vie d’une étoile est essentiellement déterminée par la vitesse à laquelle se produisent les réactions nucléaires : plus la masse de l’étoile est élevée, plus les réactions nucléaires sont rapides et la durée de vie de l’étoile brève. Les étoiles les plus massives ont une durée de vie de quelques millions d’années seulement, les moins massives de plus de mille milliards d’années. Une étoile comme le Soleil a une durée de vie de l’ordre de 10 milliards d’années.
La formation d’étoiles est due à l’effondrement d’un nuage de gaz et à sa fragmentation possible en plusieurs proto-étoiles, lesquelles s’échauffent à mesure qu’elles se contractent. La température peut alors atteindre une valeur telle que le cœur « s’allume » : l’hydrogène fusionne en hélium, fournissant l’énergie qui arrête l’effondrement. L’étoile entre alors dans la séquence principale où elle passe la majeure partie de sa vie. L’énergie produite par cette conversion est progressivement évacuée par l’étoile à la fois par convection et par radiation et s’échappe finalement de la surface de l’étoile sous forme de rayonnement, de vents stellaires et de neutrinos. Son évolution ultérieure dépend essentiellement de sa masse. Plus celle-ci est élevée, plus l’étoile est en mesure d’amorcer des réactions de fusion avec des éléments chimiques de plus en plus lourds. Elle peut ainsi synthétiser du carbone, puis de l’oxygène, du néon, etc. La quasi-totalité des éléments plus lourds que l’hélium est produite dans les étoiles (on parle de nucléosynthèse stellaire) dans les derniers stades de leur évolution. Si une étoile est suffisamment massive pour synthétiser du fer, alors elle est vouée à connaître une fin paroxystique sous forme de supernova : son cœur implose et ses couches externes sont disloquées par le processus. Le résidu laissé par l’implosion du cœur est un objet extrêmement compact, qui peut être soit une étoile à neutrons, éventuellement détectable sous la forme d’un pulsar, soit un trou noir. Les étoiles moins massives connaissent une fin de vie moins violente : elles perdent peu à peu la majeure partie de leur masse, qui forme par la suite une nébuleuse planétaire, et voient leur cœur se contracter lentement pour former une naine blanche.
Observation
À l’œil nu
La nuit, les étoiles apparaissent à l’œil nu sous la forme de points (à cause de leur éloignement) brillants de couleur blanche, parfois aussi rouge, orangée ou bleue — généralement scintillants et sans mouvement apparent immédiat par rapport aux autres objets fixes de la voûte céleste. Le phénomène de scintillation est dû à l’extrême petitesse de la taille angulaire des étoiles (quelques millisecondes d’arc voire moins), qui est inférieure à celle de la turbulence atmosphérique. À l’inverse, les planètes, bien qu’apparaissant comme des points, ont en réalité une taille angulaire suffisante pour ne pas être soumise au phénomène de scintillation. Si les étoiles se déplacent les unes par rapport aux autres, ce mouvement propre est très faible, même pour les étoiles les plus proches, n’excédant pas quelques secondes d’arc par an, ce qui explique leur apparente immobilité les unes par rapport aux autres.
Le jour, le Soleil domine et sa lumière, diffusée par la couche atmosphérique, occulte celle des étoiles. Mais l’astre le plus brillant visible depuis la Terre est bien lui-même une étoile.
Le Soleil semble beaucoup plus gros que toutes les autres étoiles car celles-ci sont bien plus éloignées : l’étoile la plus proche de la Terre après le Soleil, Proxima du Centaure, est située à environ quatre années-lumière de nous, soit près de 250 000 fois la distance qui nous sépare du Soleil (l’unité astronomique).
Selon les conditions d’observation, le nombre d’étoiles visibles à l’œil nu varie fortement et peut atteindre plusieurs milliers dans les cas les plus favorables. Hormis le Soleil et Sirius — et encore, uniquement dans d’excellentes conditions d’observation — les étoiles sont trop peu brillantes pour être observables en plein jour (sauf lors des éclipses totales de Soleil et lors de phénomènes temporaires comme les novae ou les supernovae). L’éclat des étoiles est quantifié par une grandeur appelée magnitude apparente. Pour des raisons historiques, la magnitude est d’autant plus petite que l’astre est brillant : l’astronome de la Grèce antique Hipparque avait classifié les étoiles en astres de première grandeur pour les plus brillants, seconde grandeur pour les suivants, et ainsi de suite jusqu’à cinquième grandeur. La définition mathématique précise de la magnitude apparente reprend essentiellement cette classification, avec les étoiles les plus brillantes dotées d’une magnitude proche de 0 (à l’exception de Sirius, de magnitude -1,5 et de Canopus, de magnitude -0,7) et les plus faibles d’une magnitude supérieure à 6. Un écart de 1 en magnitude correspond à un rapport de luminosité de 2,5 environ, un écart de 5 à un rapport de 100. Le Soleil a une magnitude apparente de -26,7, c’est-à-dire que vu de la Terre, il est environ 10 milliards de fois plus brillant que Sirius.
Les étoiles semblent associées en figures géométriques plus ou moins simples, les constellations ; il s’agit d’un simple effet d’optique. Les structures stellaires réelles sont des amas (rassemblant quelques milliers d’étoiles) ou des galaxies (rassemblant de l’ordre du milliard d’étoiles).
L’observation à l’œil nu a été la première forme d’astronomie.
Avec des instruments
Depuis Galilée, de multiples instruments ont permis de révéler des caractéristiques variées des étoiles, qui sont détaillées ci-après.
Pour étudier les étoiles,[Note 2] les principaux instruments sont : la lunette astronomique — remplacée aujourd’hui par le télescope (aussi bien au sol que dans l’espace) — le spectrographe, le photomètre et le polarimètre. Depuis quelques années, les techniques de spectroscopie et d’interférométrie ont permis d’augmenter la résolution angulaire limitée au sol par la turbulence atmosphérique, soit environ une demi-seconde d’arc sur les meilleurs sites d’observations. Ces techniques ont révélé des structures autour des étoiles mais aussi permettent d’accéder au diamètre angulaire de quelques centaines d’étoiles. Après l’œil, les détecteurs utilisés furent les plaques photographiques puis les détecteurs numériques comme le CCD.
Catalogues d’étoiles
Pour repérer les étoiles et faciliter le travail des astronomes, de nombreux catalogues ont été créés. Parmi les plus célèbres, citons le catalogue Henry Draper (HD) et le Bonner Durchmusterung (BD). Les étoiles y sont rangées par leurs coordonnées, alpha (ascension droite) et delta (déclinaison) et un numéro leur est attribué : par exemple, HD 122653 (célèbre géante de Population II, très déficiente en métaux).
Caractéristiques principales
Une étoile est caractérisée par différentes grandeurs :
Masse
La masse est une des caractéristiques les plus importantes d’une étoile. En effet, cette grandeur détermine sa durée de vie ainsi que son comportement pendant son évolution et la fin de sa vie : une étoile massive sera très lumineuse mais sa durée de vie sera réduite.
Les étoiles ont une masse comprise entre environ 0,08 et 120 fois la masse du Soleil, soit (très) près de 2.1030 kilogrammes (2 milliards de milliards de milliards de tonnes). En deçà de la masse minimale, l’échauffement généré par la contraction gravitationnelle est insuffisant pour démarrer le cycle de réactions nucléaires : l’astre ainsi formé est une naine brune. Au-delà de la masse maximale, la force de gravité est insuffisante pour retenir toute la matière de l’étoile une fois les réactions nucléaires entamées.
Estimation
La détermination de la masse d’une étoile ne peut se faire de façon précise que lorsqu’elle appartient à un système binaire par l’observation de son orbite. La troisième loi de Kepler permet alors de calculer la somme des masses des deux étoiles de la binaire à partir de sa période et du demi-grand axe de l’orbite décrite et de la distance de la Terre à l’étoile double observée. Le rapport des masses est obtenu par la mesure de la vitesse radiale des deux étoiles de la binaire. La connaissance de la somme et du rapport des masses permet de calculer la masse de chaque étoile. C’est la technique la plus précise.
D’autres estimations sont possibles pour des étoiles non binaires (simples) en utilisant la détermination spectroscopique de la gravité de surface et la mesure du rayon de l’étoile par interférométrie. Enfin, si l’étoile est observée de façon précise en photométrie et si sa distance, sa composition chimique et sa température effective sont connues, il est possible de la positionner dans un diagramme de Hertzsprung-Russell (noté HR) qui donne immédiatement la masse et l’âge de l’étoile (Théorème de Vogt-Russell).
Diamètre
Comparativement à notre planète (12 756 km de diamètre), les étoiles sont gigantesques : le Soleil a un diamètre d’environ un million et demi de kilomètres et certaines étoiles (comme Antarès ou Bételgeuse) ont un diamètre des centaines de fois supérieur à ce dernier.
Le diamètre d’une étoile n’est pas constant dans le temps : il varie en fonction de son stade d’évolution. Il peut aussi varier régulièrement pour les étoiles variables périodiques (RR Lyrae, Céphéides, Miras, etc.)
Des interféromètres comme celui du VLT de l’ESO au Chili ou CHARA en Californie permettent la mesure directe du diamètre des étoiles les plus proches.
Composition chimique
La composition chimique de la matière d’une étoile ou d’un gaz dans l’Univers est généralement décrit par trois quantités en nombre de masse : X (l’hydrogène), Y (l’hélium) et Z la métallicité. Ce sont des grandeurs proportionnelles satisfaisant la relation : X + Y + Z = 1.
Métallicité
La métallicité est la quantité (mesurée en nombre, ou généralement par masse) des éléments plus lourds que l’hélium présents dans l’étoile (ou plutôt sa surface). Le Soleil possède une métallicité (notée Z) de 0,02 : 2 % de la masse du Soleil est composée d’éléments qui ne sont ni de l’hydrogène, ni de l’hélium. Pour le Soleil, ce sont principalement du carbone, de l’oxygène, de l’azote et du fer. Bien que cela semble faible, ces deux pourcents sont pourtant très importants pour évaluer l’opacité de la matière de l’étoile, qu'elle soit interne ou dans son atmosphère. Cette opacité contribue à la couleur, à la luminosité et à l’âge de l’étoile (voir diagramme de Hertzsprung-Russell et théorème de Vogt-Russell).
L’opacité est directement liée à la capacité de l’étoile à produire un vent stellaire (cas extrême des étoiles Wolf-Rayet).
Magnitude
La magnitude mesure la luminosité d’une étoile ; c’est une échelle logarithmique de son flux radiatif. La magnitude apparente dans un filtre donné (ex. : le visible noté mv), qui dépend de la distance entre l’étoile et l’observateur, se distingue de la magnitude absolue, qui est la magnitude de l’étoile si celle-ci était arbitrairement placée à 10 parsecs de l’observateur. La magnitude absolue est directement liée à la luminosité de l’étoile à condition de tenir compte d’une correction dite bolométrique (on la note BC). L’introduction de l’échelle logarithmique des magnitudes vient du fait que l’œil possède une sensibilité également logarithmique, en première approximation (loi de Pogson).
Température et couleur
La plupart des étoiles paraissent blanches à l’œil nu, parce que la sensibilité de l’œil est maximale autour du jaune. Mais si nous regardons attentivement, nous pouvons noter que de nombreuses couleurs sont représentées : bleu, vert, jaune, rouge. L’origine de ces couleurs resta longtemps un mystère jusqu’à il y a deux siècles, quand les physiciens eurent suffisamment de compréhension sur la nature de la lumière et les propriétés de la matière aux très hautes températures.
La couleur permet de classifier les étoiles suivant leur type spectral (qui est en rapport avec la température de l’étoile). Les types spectraux vont du plus violet au plus rouge, c’est-à-dire du plus chaud vers le plus froid. Ils sont classés par les lettres O B A F G K M.[Note 3] Le Soleil, par exemple, est de type spectral G.
Mais il ne suffit pas de caractériser une étoile par sa couleur (son type spectral), il faut aussi mesurer sa luminosité. En fait, pour un type spectral donné, la taille de l’étoile est corrélée à sa luminosité, la luminosité étant fonction de la surface — et donc de la taille de l’étoile. Les étoiles O et B sont bleues à l’œil comme β Orionis ; les étoiles A sont blanches comme α Canis Majoris (Sirius) ou α Lyrae (Vega) ; les étoiles F et G sont jaunes, comme le Soleil ; les étoiles K sont orange comme α Bootis (Arcturus) ; et enfin les étoiles M sont rouges comme α Orionis (Bételgeuse).
On peut définir un indice de couleur, correspondant à la différence de flux photométrique dans deux bandes spectrales dites bandes photométriques (les filtres). Par exemple, le bleu (B) et le visible (V) formeront ensemble l’indice de couleur B-V dont la variation est reliée à la température de surface de l’étoile et donc à son type spectral. Les indices de température les plus utilisés sont le B-V, le R-I et le V-I car ce sont les plus sensibles à la variation de la température.
Vitesse de rotation
La rotation du Soleil a été mise en évidence grâce au déplacement des taches solaires. Pour les autres étoiles, la mesure de cette vitesse de rotation (plus précisément, la vitesse mesurée est la projection de la vitesse de rotation équatoriale sur la ligne de visée), s’obtient par spectroscopie. Elle se traduit par un élargissement des raies spectrales.
Ce mouvement de rotation est un reliquat de leur formation à partir de l’effondrement du nuage de gaz. La vitesse de rotation dépend de leur âge : elle diminue au cours du temps, sous les effets conjugués du vent stellaire et du champ magnétique qui emportent une partie du moment cinétique de l’astre. Cette vitesse dépend également de leur masse et de leur statut d’étoile simple, binaire ou multiple. Une étoile n’étant pas un corps solide (c’est-à-dire rigide), elle est animée d’une rotation différentielle : la vitesse de rotation dépend de la latitude.
Spectre radiatif
Le spectre d’une source lumineuse et donc d’une étoile est obtenu par des spectrographes qui décomposent la lumière en ses différentes composantes et les enregistrent par le biais de détecteurs (historiquement, des plaques photographiques et aujourd’hui des détecteurs de type CCD). Cette décomposition de la lumière révèle la distribution de l’énergie lumineuse venant de l’étoile en fonction de la longueur d'onde. Elle permet de mettre en évidence des raies spectrales en émission et/ou en absorption révélant les conditions de température, de pression et d’abondances chimiques des couches externes de l’étoile.
Champ magnétique
Comme le Soleil, les étoiles sont souvent dotées de champs magnétiques. Leur champ magnétique peut avoir une géométrie relativement simple et bien organisée, ressemblant au champ d’un aimant comme le champ magnétique terrestre ; cette géométrie peut être aussi nettement plus complexe et présenter des arches à plus petite échelle. Le champ magnétique du Soleil, par exemple, possède ces deux aspects ; sa composante à grande échelle structure la couronne solaire et est visible lors des éclipses, tandis que sa composante à plus petite échelle est liée aux taches sombres qui maculent sa surface et dans lesquelles les arches magnétiques sont ancrées.
Il est possible de mesurer le champ magnétique des étoiles à travers les perturbations que ce champ induit sur les raies spectrales formées dans l’atmosphère de l’étoile (l’effet Zeeman). La technique tomographique d’imagerie Zeeman-Doppler permet en particulier de déduire la géométrie des arches géantes que le champ magnétique dresse à la surface des étoiles.
Parmi les étoiles magnétiques[2], on distingue d’abord les étoiles dites « froides » ou peu massives, dont la température de surface est inférieure à 6 500 K et dont la masse ne dépasse pas 1,5 masses solaires - le Soleil fait donc partie de cette classe. Ces étoiles sont « actives », c’est-à-dire qu’elles sont le siège d’un certains nombres de phénomènes énergétiques liés au champ magnétique, comme par exemple la production d’une couronne, d’un vent (dit vent solaire dans le cas du Soleil) ou d’éruptions. Les taches à la surface du Soleil et des étoiles témoignent également de leur activité ; comme les champs magnétiques, les taches des étoiles peuvent être cartographiées par des méthodes tomographiques. La taille et le nombre de ces taches dépendent de l’activité de l’étoile, elle-même fonction de la vitesse de rotation l’étoile. Le Soleil, qui effectue un tour complet sur lui-même en 25 jours environ, est une étoile ayant une faible activité cylique. Le champ magnétique de ces étoiles est produit par effet dynamo.
Il existe aussi des étoiles chaudes magnétiques. Mais contrairement aux étoiles froides, qui sont toutes magnétiques (à différents degrés), seule une petite fraction (entre 5 et 10 %) des étoiles chaudes (massives) possède un champ magnétique, dont la géométrie est en général assez simple. Ce champ n’est pas produit par effet dynamo ; il constituerait plutôt une empreinte fossile du magnétique interstellaire primordial, capturé par le nuage qui va donner naissance à l’étoile et amplifié lors de la contraction de ce nuage en étoile. De tels champs magnétiques ont été baptisés « champs magnétiques fossiles ».
Structure d’une étoile
À partir des différentes grandeurs mesurées et de simulations issues de différents modèles, il est possible de construire une image de l’intérieur d’une étoile, bien qu’il nous soit presque inaccessible — l’astérosismologie permettant littéralement de sonder les étoiles.
En l’état actuel de nos connaissances, une étoile est structurée en différentes régions concentriques, décrites ci-après à partir du centre.
Noyau
Le noyau (ou cœur) est la partie centrale de l’étoile, concentrant une grande partie de la masse de l’astre, dans laquelle se déroulent les réactions thermonucléaires qui dégagent l’énergie nécessaire à sa stabilité. Le noyau est la zone la plus dense et la plus chaude, et, dans le cas du Soleil, atteint la température de 15,7 millions de kelvins. Dans ces conditions extrêmes, la matière se trouve sous forme de plasma ; par effet tunnel, les noyaux d’hydrogène (protons) ou d’autres éléments chimiques atteignent des vitesses leur permettant de vaincre leur répulsion électrique et de fusionner : par exemple, dans les chaînes nucléaires dites proton-proton (ou PP1, PP2…), les protons fusionnent par groupe de quatre pour donner un noyau d’hélium, composé de deux protons et de deux neutrons. Il se produit alors un dégagement d’énergie selon les réactions suivantes :
- 2 (1H + 2D → 3He + γ) (5,5 MeV)
- 3He + 3He → 4He + 1H + 1H (12,86 MeV)
D’autres réactions thermonucléaires existent dans le centre des étoiles et contribuent plus ou moins à la production d’énergie.
Une partie de l’énergie dégagée sous forme de photons commence alors un long voyage vers l’extérieur, car un plasma est opaque et la lumière y voyage très difficilement. On estime qu’un photon met plusieurs millions d’années avant d’atteindre la surface de l’étoile par transfert de rayonnement puis par convection vers la surface.
Zone radiative
L’énergie libérée par les réactions de fusions nucléaires dans le noyau de l’étoile se transmet aux couches externes par rayonnement. Dans les étoiles peu massives et évoluant sur la séquence principale, cette zone radiative est surmontée d’une zone convective externe; dans les naines rouges, la zone radiative a entièrement disparu au profit de la zone convective. Dans le Soleil, le rayonnement produit dans la partie centrale met près d’un million d’années à traverser la zone radiative.
Zone convective
Au contraire de la zone précédente, l’énergie se transmet par des mouvements macroscopiques de matière : chauffée à la base de la couche convective, la matière s’élève sous l’effet de la poussée d'Archimède, réchauffe la matière alentour (vers la surface), se refroidit et plonge vers la base de la zone convective pour un nouveau cycle. C’est le principe de la convection. Cette zone convective est plus ou moins grande : pour une étoile sur la séquence principale, elle dépend de la masse et de la composition chimique ; pour une géante, elle est très développée et occupe un pourcentage important du volume de l’étoile ; pour une supergéante, cette zone peut atteindre les trois quarts du volume de l’étoile, comme pour Bételgeuse. Dans les étoiles de très faible masse (naines rouges) ou dans les protoétoiles en formation de faible masse (étoiles T Tauri), la zone convective occupe la totalité du volume de l'étoile; dans les étoiles plus massives que deux fois la masse du Soleil, la zone convective externe disparaît (laissant la place à la zone radiative) mais la convection subsiste au cœur de l'étoile.
C'est dans la zone convective externe que sont produits les champs magnétiques de type dynamo des étoiles froides comme le Soleil et les naines rouges.
Photosphère
La photosphère est la partie externe de l’étoile qui produit la lumière visible. Elle est plus ou moins étendue : de moins de 1 pourcent du rayon pour les étoiles naines (quelques centaines de kilomètres) à quelques dizaines de pourcents du rayon de l’étoile pour les plus géantes. La lumière qui y est produite contient toutes les informations sur la température, la gravité de surface et la composition chimique de l’étoile. Pour le Soleil, la photosphère a une épaisseur d’environ 400 kilomètres.
Couronne
La couronne est la zone externe, ténue et extrêmement chaude du Soleil. Elle est due à la présence d'un champ magnétique, produit dans la zone convective; on peut l’observer lors des éclipses de Soleil. C’est grâce à l’étude de la couronne au XIXe siècle que l’astronome Jules Janssen a découvert l’existence du gaz rare dont le nom fait référence au Soleil (Hélios) : l’hélium. Le fait que la température de la couronne atteigne plusieurs millions de degrés est un problème théorique difficile et non encore complètement résolu. Il est probable que la plupart des étoiles de faible masse (contenant une zone convective externe) possèdent des champs magnétiques et donc des couronnes.
Théorème de Vogt et Russell
Le théorème de Vogt-Russell peut s’énoncer ainsi : si en tous points d’une étoile la connaissance des valeurs de la température, de la densité et de la composition chimique du plasma interne sont suffisantes pour calculer la pression, l’opacité du plasma et le taux d’énergie produit, alors la masse et la composition chimique de l’étoile sont suffisantes pour décrire la structure de celle-ci. Il en résulte les relations masse-rayon ou masse-luminosité des étoiles.
Évolution
Article détaillé : évolution des étoiles.L’histoire d’une étoile est entièrement déterminée par sa masse M et sa composition chimique X, Y, Z (théorème de Vogt et Russell). M détermine sa durée d’existence, et conditionne sa fin. L’évolution d’une étoile passe par plusieurs phases, la première est la phase naine ou séquence principale, la seconde est la phase géante puis supergéante pour terminer par la phase finale telle une supernova ou une nébuleuse planétaire.
Formation
Article détaillé : formation stellaire.Une étoile naît de la contraction d’un nuage riche en hydrogène. Sous l’influence d’une onde de densité (bras de galaxie), d’une onde de choc (supernova ou nova proche), ou d’une fluctuation de densité au sein de celui-ci, une région commence à se contracter. Par un effet boule de neige, cette région, de plus en plus dense attire à elle de plus en plus de gaz. La contraction du gaz entraîne son échauffement : la proto-étoile rayonne (dans l’infrarouge). Ce rayonnement ralentit par pression de radiation, mais n’interrompt pas, l’inexorable action de la gravitation. Si l’échauffement est suffisant, il peut initier des réactions nucléaires au cœur du nuage. L’énergie dégagée par ces réactions arrête la contraction du fait de la pression de radiation ainsi générée.
La séquence principale
Sous l’effet de la contraction, le noyau de l’étoile (sa partie centrale) atteint des valeurs de pression et de température extrêmes, qui vont jusqu’à l’allumage des réactions thermonucléaires (voir plus haut). L’étoile entre alors dans ce qu’on appelle la séquence principale, période pendant laquelle son noyau, initialement et essentiellement constitué d’hydrogène et d’hélium, va progressivement se transformer en hélium.
Durant cette période, l’antagonisme énergie produite / gravitation concourt à la stabilité de l’astre :
Si le flux d’énergie venant du noyau vient à diminuer, la contraction qui s’ensuit accélère le rythme de production d’énergie qui stoppe la contraction ; inversement, un emballement de la production d’énergie entraîne une dilatation de l’étoile, donc son refroidissement, et l’emballement s’arrête. Ainsi, il en résulte une grande stabilité de l’étoile qui est décrite dans la théorie de la structure interne stellaire sous l’appellation « pic de Gamow » : c’est une sorte de thermostat stellaire.
La fin d’une étoile
Article connexe : Historique des naines blanches, des étoiles à neutrons et des supernovae.Plus une étoile est massive, plus elle consomme rapidement son hydrogène. Une grosse étoile sera donc très brillante, mais aura une courte durée de vie. Lorsque le combustible nucléaire se fait trop rare dans le noyau de l’étoile, les réactions de fusion s’arrêtent. La pression créée par ces réactions ne compensant plus les forces de gravitation, l’étoile s’effondre sur elle-même. Plus une étoile est grosse, plus la fin de son existence sera cataclysmique, pouvant aller jusqu’à prendre la forme d’une gigantesque explosion (supernova) suivi de la formation d’une étoile à neutrons voire dans les cas extrêmes (selon la masse de l’étoile) d’un trou noir.
Les types d’étoiles
Les astronomes classent les étoiles en utilisant la température effective et la luminosité. Cette classification à deux paramètres permet de définir des types spectraux (luminosité) variant de VI à I, les naines étant classées V. Le Soleil est de classe V. Parmi ces classes on distingue différentes catégories liées à la température de surface. Par exemple les : naines brunes, naines rouges, naines jaunes, géantes rouges, géantes bleues, supergéantes rouges, naines blanches, étoiles à neutrons et trous noirs. Si la plupart des étoiles se placent facilement dans l’une ou l’autre de ces catégories, il faut garder en tête qu’il ne s’agit que de phases temporaires. Au cours de son existence, une étoile change de forme et de couleur, et peut passer d’une catégorie à une autre.
Naines brunes
Article détaillé : Naine brune.Les naines brunes ne sont pas des étoiles, ou plutôt, ce sont des étoiles « manquées ». Leur masse est située entre celles des petites étoiles et des grosses planètes. En effet, au moins 0,08 masse solaire est nécessaire pour qu’une proto-étoile amorce des réactions thermonucléaires et devienne une véritable étoile. Les naines brunes ne sont pas suffisamment massives pour démarrer ces réactions. Elles peuvent briller cependant faiblement par contraction gravitationnelle.
Naines rouges
Article détaillé : naine rouge.Les naines rouges sont de petites étoiles rouges. On les considère comme les plus petites étoiles en tant que telles. Les astres plus petits comme les naines blanches, les étoiles à neutrons et les naines brunes ne consomment pas de carburant nucléaire. La masse des naines rouges est comprise entre 0,08 et 0,8 masse solaire. Leur température de surface entre 2 500 et 5 000 K leur confère une couleur rouge. Les moins massives d'entre elles (au-dessous de 0,35 masse solaire environ) sont entièrement convectives. Ces étoiles brûlent lentement leur carburant, ce qui leur assure une très longue existence. Elles sont les plus abondantes : au moins 80 % des étoiles de notre Galaxie sont des naines rouges. La plus proche voisine du Soleil, Proxima du Centaure, en est une. Il en est de même du second système stellaire, le plus proche système solaire, l’étoile de Barnard est aussi une naine rouge.
Naines jaunes
Article détaillé : naine jaune.Les naines jaunes sont des étoiles de taille moyenne — les astronomes ne classent les étoiles qu’en naines ou en géantes. Leur température de surface est d’environ 6 000 K et elles brillent d’un jaune vif, presque blanc. À la fin de son existence, une naine jaune évolue en géante rouge, qui en expulsant ses couches externes — déployant alors une nébuleuse planétaire —, dévoile une naine blanche.
Le Soleil est une naine jaune typique.
Géante rouge
Article détaillé : Géante rouge.La phase géante rouge annonce la fin d’existence de l’étoile, qui atteint ce stade lorsque son noyau a épuisé son principal carburant, l’hydrogène : des réactions de fusion de l’hélium se déclenchent, tandis que le centre de l’étoile se contracte, et que ses couches externes gonflent, refroidissent et rougissent. Transformé en carbone et en oxygène, l’hélium s’épuise à son tour et l’étoile s’éteint. Les couches externes de l’astre s’éloignent et son centre se contracte, dévoilant une naine blanche.
Géante bleue et supergéante rouge
Articles détaillés : Géante bleue et Supergéante rouge.Sur le diagramme HR, le coin supérieur gauche est occupé par des étoiles très chaudes et brillantes : les géantes bleues. Ces étoiles très massives, au moins dix fois plus grosses que le Soleil, consomment rapidement leur hydrogène.
Lorsque le noyau d’une géante bleue ne contient plus d’hydrogène, la fusion de l’hélium prend le relais. Ses couches externes enflent et sa température de surface diminue. Elle devient alors une supergéante rouge.
L’étoile fabrique ensuite des éléments de plus en plus lourds : fer, nickel, chrome, cobalt, titane… À ce stade, les réactions de fusion s’arrêtent et l’étoile devient instable. Elle explose en une supernova et laisse derrière elle un étrange noyau de matière qui demeurera intact qui deviendra selon sa masse, une étoile à neutrons ou un trou noir.
Naines blanches
Article détaillé : Naine blanche.Les naines blanches sont les résidus de l’évolution des étoiles de faible masse (entre ~0,8 et ~5 à 8 masses solaires). Le Soleil ayant (par définition) une masse d’une masse solaire, il finira aussi en naine blanche. Les naines blanches sont des étoiles « mortes » puisqu’elles ne sont plus le lieu de réactions thermonucléaires produisant de la chaleur. Par contre, elles sont très chaudes, et ont au début, une couleur relativement blanche (voir Loi de Wien). Petit à petit, elles se refroidissent par rayonnement, comme astres froids. Leur taille est environ égale à celle de la Terre.
Les naines blanches, comme les étoiles à neutrons sont constituées de matière dégénérée. La densité moyenne d’une naine blanche est telle qu’une cuillère à thé de matière d’une telle étoile aurait, sur Terre, le poids d’un éléphant soit environ 1 kg⋅mm-3. En fait, dans cette matière, les électrons, étant très proches les uns des autres, commencent alors à se repousser énergiquement. Le facteur principal de la pression provient alors du principe d'exclusion de Pauli ; c’est la pression de dégénérescence qui s’oppose à celle de la gravitation. La naine blanche est donc en équilibre malgré l’absence de fusion nucléaire en son noyau. La pression des électrons peut supporter une masse de 1,44 fois celle du Soleil : c’est la limite de Chandrasekhar.
Si une naine blanche devient plus massive (en aspirant la matière d’une autre étoile, par exemple), elle explose en supernova (de type Ia) et est complètement détruite, vaporisée en nébuleuse. C'est le type des supernovas thermonucléaires.
Procyon B et Sirius B sont des naines blanches.
Naine noire
Article détaillé : Naine noire.Comme une plaque chauffante qu’on éteint, les naines blanches se refroidissent inexorablement. Toutefois, cela se fait très lentement, en raison de leur masse. Elles perdent peu à peu leur éclat et deviennent invisibles au bout d’une dizaine de milliards d’années. Ainsi, toute naine blanche se transforme en naine noire.
L’Univers, vieux de 13,7 milliards d’années, est encore trop jeune pour avoir produit des naines noires.
Après sa mort, le Soleil deviendra une naine blanche puis une naine noire. Ce sort l’attend dans environ 15 milliards d’années.
Étoile à neutrons et trou noir
Articles détaillés : Étoile à neutrons et Trou noir.Les étoiles à neutrons sont très petites mais très denses. Elles concentrent la masse d’une fois et demi celle du Soleil dans un rayon d’environ 10 kilomètres. Ce sont les vestiges d’étoiles très massives de plus de 10 masses solaires dont le cœur s'est contracté pour atteindre des valeurs de densité extraordinairement élevées, comparables à celles du noyau atomique.
Lorsqu’une étoile massive arrive en fin de vie, elle s’effondre sur elle-même, en produisant une impressionnante explosion appelée supernova. Cette explosion disperse la majeure partie de la matière de l'étoile dans l’espace tandis que le noyau se contracte et se transforme en une étoile à neutrons.[Note 4] Ces objets possèdent des champs magnétiques très intenses (pour les plus intenses, on parle de magnétar). Le long de l’axe magnétique se propagent des particules chargées, électrons par exemple, qui produisent un rayonnement synchrotron.
Le moment cinétique de l’étoile étant conservé lors de l’effondrement du noyau, l’étoile à neutrons possède une vitesse de rotation extrêmement élevée, pouvant atteindre le millier de tours par seconde. Si par chance un observateur sur Terre regarde dans la direction d’une étoile à neutrons et que la ligne de visée est perpendiculaire à l’axe de rotation de l’étoile, celui-ci verra alors le rayonnement synchrotron des particules chargées se déplaçant sur les lignes de champ magnétique. Ce phénomène de phare tournant s’appelle le phénomène de pulsar. On trouve des pulsars dans des restes de supernovas, le plus célèbre étant le pulsar de la nébuleuse du Crabe, né de l’explosion d’une étoile massive. Cette supernova fut observée par les astronomes chinois depuis le matin du 4 juillet 1054, en plein jour pendant trois semaines et durant la nuit pendant près de deux ans.
Parfois, le noyau de l’étoile morte est trop massif pour devenir une étoile à neutrons. Il se contracte inexorablement jusqu’à former un trou noir.
Étoile variable
Articles détaillés : Étoile variable et Étoile éruptive.Alors que la plupart des étoiles sont de luminosité presque constante, comme notre Soleil qui ne possède pratiquement pas de variation mesurable (environ 0,1 % sur un cycle de 11 ans), la luminosité de certaines étoiles varie de façon perceptible sur des périodes de temps beaucoup plus courtes, parfois de façon spectaculaire.
Les systèmes stellaires
Les étoiles se forment rarement seules. Lorsqu’un nuage de gaz (proto-stellaire) donne naissance à un amas d’étoiles, l’ensemble des étoiles de cet amas ne semble pas se distribuer au hasard, mais semble suivre une loi de distribution dite fonction de masse initiale (IMF), dont on sait peu de chose actuellement ; elle rend compte de la proportion d’étoiles en fonction de leur masse. On ne sait pas si cette fonction IMF dépend de la composition chimique du nuage proto-stellaire. La fonction la plus adoptée actuellement a été proposée par Edwin Salpeter et semble donner des résultats satisfaisants pour l’étude des amas de la Galaxie.
Les systèmes binaires et multiples
Les systèmes binaires sont constitués de deux étoiles liées gravitationnellement et orbitant l’une autour de l’autre. L’élément le plus brillant est dit primaire et le moins brillant, secondaire. Lorsqu’un système comporte plus de deux composantes il est qualifié de système stellaire multiple.
Les systèmes binaires peuvent être détectés par imagerie, lorsque le télescope parvient à résoudre la paire ; dans ce cas la binaire est dite visuelle. Dans d’autres cas, les deux compagnons ne peuvent être résolus, mais le décalage Doppler-Fizeau des raies spectrales permet de détecter le mouvement orbital de l’une ou des deux étoiles. Dans ce cas la binaire est dite spectroscopique. Si un seul spectre est visible et varie on parle de binaire SB1, si le spectre des deux étoiles est bien visible on parle de binaire SB2. Il est également possible de détecter le mouvement apparent dans le ciel de l’étoile binaire, qui correspond au mouvement orbital de l’étoile primaire si le secondaire est très peu lumineux ; dans ce cas la binaire est dite astrométrique. On parle enfin de binaire interférométrique lorsque le secondaire est détecté par interférométrie.
L’astronomie amateur parle de binaire apparente lorsque deux étoiles éloignées dans l’espace et non liées gravitationnellement se trouvent proches dans le ciel par effet de perspective.
Les amas
Article détaillé : Amas stellaire.Les amas stellaires sont des regroupements locaux d’étoiles liées gravitationnellement et formées en même temps. De ce fait, ils constituent une population de référence pour étudier la durée de vie d’une étoile en fonction de sa taille (voir diagramme de Hertzsprung-Russell). On peut s’en servir pour déterminer l’âge des plus vieilles populations d’étoiles de notre Galaxie.
On distingue les amas ouverts (AO) constitués de quelques dizaines à quelques milliers d’étoiles et généralement de forme quelconque et les amas globulaires (AG) constitués de plusieurs milliers à plusieurs millions d’étoiles.
Les AO sont jeunes, de quelques dizaines à quelques centaines de millions d’années. Parmi les plus vieux M67 (4,6 milliards d’années comme le Soleil) est aussi parmi les plus gros. Dans notre galaxie, les AO sont riches en métaux (typiquement comme le Soleil). Les AG sont de forme sphérique d’où leur nom. Leurs étoiles sont pauvres en métaux et ils comptent parmi les objets les plus vieux de la Galaxie. Ils se répartissent dans le sphéroïde de la Galaxie qu’on appelle le halo. Leur âge est compris entre environ 10 et 13,5 milliards d’années. Omega du centaure est parmi les plus gros. Sa population stellaire n’est pas unique ce qui montre qu’il a eu une origine étalée dans le temps permettant la formation de plusieurs d’entre elles (au moins trois). Il est considéré comme pouvant être le résidu d’une galaxie naine ayant été capturée par la Voie Lactée. NGC6397 est au contraire un amas à population stellaire unique avec une abondance en métaux d’un centième de celle du Soleil. L’AG le plus pauvre en métaux connu est M92 avec presque un millième de l’abondance solaire.
Les associations
Les associations stellaires sont semblables aux amas, à ceci près qu’elles ne constituent pas un système lié gravitationnellement. Aussi les associations se dispersent-elles au bout d’un certain temps. Exemple d’association : les associations O-B constituées principalement d’étoiles très massives et très chaudes. On peut les considérer comme des petits amas ouverts très jeunes présentant encore beaucoup de gaz ionisé dans le voisinage des étoiles. On les rencontre dans notre Galaxie principalement dans les bras.
Les galaxies
Article détaillé : Galaxie.Une galaxie est un vaste ensemble d’étoiles. Les galaxies diffèrent des amas par leur taille (plusieurs centaines de milliards d’étoiles contre quelques milliers à quelques millions pour les amas stellaires), leur organisation et leur histoire.
Constellations
En observant le ciel nocturne, l’homme a imaginé que les étoiles les plus brillantes pouvaient constituer des figures. Ces regroupements diffèrent généralement d’une époque à une autre et d’une civilisation à une autre. Les figures devenues traditionnelles, souvent en rapport avec la mythologie grecque, sont appelées constellations.
Les étoiles d’une constellation n’ont a priori rien en commun, si ce n’est d’occuper, vues de la Terre, une position voisine dans le ciel. Elles peuvent être très éloignées les unes des autres. Toutefois, l’Union astronomique internationale a défini une liste normalisée des constellations, attribuant à chacune une région du ciel, afin de faciliter la localisation des objets célestes.
Les systèmes planétaires
Les étoiles peuvent être accompagnées de corps gravitant autour d’elles. Ainsi, le système solaire est composé d’une étoile centrale, le Soleil, accompagné de planètes, comètes, astéroïdes. Depuis 1995, 340 planètes ont été découvertes autour d’autres étoiles que le Soleil, faisant perdre au système solaire son caractère supposé unique. Tous ces systèmes planétaires sont découverts de façon indirecte. La première étoile autour de laquelle des planètes ont été révélées par des mesures vélocimétriques est 51 Peg (observations réalisées à l’OHP avec le spectrographe Elodie). De nombreux autres systèmes planétaires ont depuis été découverts. En raison des limitations actuelles de détection, ils présentent des caractéristiques semblables, avec des planètes géantes sur des orbites très excentriques : on les nomme des « Jupiter chauds ». La majorité de ces étoiles sont plus riches en métaux que le Soleil. Les statistiques sur ces systèmes planétaires permettent de conclure que le système solaire n’a pour l’instant pas d’équivalent. Depuis l’espace, la traque des systèmes planétaires par photométrie a commencé avec le satellite CoRoT (CNES). Celui-ci sera relayé en 2009 par le satellite américain Kepler.
Notes
- ↑ Jupiter possède un rayonnement intrinsèque
- ↑ Attention : le Soleil ne doit pas être regardé à travers un instrument optique grossissant, tel que jumelles, longue focale, lunette astronomique ou télescope.
- ↑ Séquence que l’on peut retenir par l’astuce mnémotechnique suivante : ce sont les initiales de la phrase anglaise Oh, Be A Fine Girl, Kiss Me.
- ↑ Sa structure et composition est plus complexe qu’une simple boule de neutrons, ainsi à sa surface on peut trouver une croûte de fer et d’autres éléments.
Références
- ↑ (en) J.-F. Donati et al, The surprising magnetic topology of τ Sco: fossil remnant or dynamo output?, Monthly Notices of the Royal Astronomical Society 370, 629 (2006) Donati et al Voir en ligne
- ↑ (en) J. D. Landstreet, Magnetic fields at the surfaces of stars, Astronomy and Astrophysics Review, 4, 35-77 (1992) Landstreet Voir en ligne.
Voir aussi
Liens internes
- Liste des étoiles les plus brillantes
- Spectroscopie astronomique
- Transfert de rayonnement
- Type spectral
Liens externes
- (fr) Vidéo-conférence sur le thème : « Qu’est-ce qu’une étoile ? » (intervention de Sylvie Vauclair)
Bibliographie
- Marc Séguin & Benoît Villeneuve, Astronomie & Astrophysique, Masson, 1995 (ISBN 2761309294)
- Joachim Herrmann, Atlas de l’astronomie, le livre de poche, coll. « encyclopédies d’aujourd’hui », 1998 (ISBN 225306453X)
- Portail de l’astronomie
Catégories : Étoile | Physique stellaire
Wikimedia Foundation. 2010.