Groupe de quaternions

Groupe de quaternions

Groupe de quaternions

Diagramme du cycle de Q. Chaque couleur précise une série de puissances d'un élément quelconque connecté à l'élément neutre (1). Par exemple, le cycle rouge reflète le fait que i 2 = -1, i 3 = -i  et i 4 = 1. Le cycle rouge reflète aussi le fait que (-i )2 = -1, (-i )3 = i  et (-i )4 = 1.

En mathématiques et dans théorie des groupes, le groupe des quaternions est un groupe non abélien d'ordre 8.

La représentation du groupe de quaternion irréductible de dimension quatre sur les nombres réels forme un corps gauche, c'est-à-dire non commutatif. Il est appelé corps des quaternions.

Sommaire

Définition

Le groupe des quaternions est souvent désigné par le symbole Q ou Q8 et est écrit sous forme multiplicative, avec les 8 éléments suivants :

Q = {1, -1, i, -i, j, -j, k, -k}\,

Ici, 1 est l'élément neutre, (- 1)^2 = 1\, et ( - 1).a = a.(- 1) = - a\, pour tout a dans Q. Les règles de multiplication restantes peuvent être obtenues à partir de la relation suivante :

i^2 = j^2 = k^2 = ijk = -1\,

Table du groupe

La table de multiplication pour Q est donnée par :

1 i j k -1 -i -j -k
1 1 i j k -1 -i -j -k
i i -1 k -j -i 1 -k j
j j -k -1 i -j k 1 -i
k k j -i -1 -k -j i 1
-1 -1 -i -j -k 1 i j k
-i -i 1 -k j i -1 k -j
-j -j k 1 -i j -k -1 i
-k -k -j i 1 k j -i -1

Le groupe ainsi obtenu est non commutatif comme on peut le voir sur la relation ij = - ji\,. Cependant Q est un groupe hamiltonien : chaque sous-groupe de Q est un sous-groupe normal, mais le groupe est non abélien. Chaque groupe hamiltonien contient une copie de Q.

Propriétés

Représentation

Considérant un espace vectoriel réel de dimension quatre dont une base est notée {1, i, j, k}, on la munit d'une structure d'algèbre associative en utilisant la table de multiplication ci-dessus et la distributivité. Le résultat est un corps appelé les corps des quaternions. Inversement, on peut démarrer avec les quaternions et définir le groupe des quaternions comme le sous-groupe multiplicatif constitué des 8 éléments {1, - 1, i, - i, j, - j, k, - k}\,.

La théorème d'Artin-Wedderburn généralise cette approche. Il permet, avec la théorie des représentations d'un groupe fini de construire des algèbres semi-simples contenant un corps gauche, c'est-à-dire non commutatif.

Nature du groupe

Les trois éléments i, j et k sont tous d'ordre 4 dans Q et deux quelconques d'entre eux engendrent le groupe entier. Q admet la présentation

\langle x,y \mid x^4 = 1, x^2 = y^2, yxy^{-1} = x^{-1}\rangle

On peut prendre, par exemple, x = i et y = j.

Le centre et le sous-groupe des commutateurs de Q est le sous-groupe {±1}. Le groupe quotient Q/{±1} est isomorphe au groupe de Klein V. Les classes de conjugaison sont au nombre de cinq : {1}, {-1}, {i, -i}, {j, -j} et {k, -k}.

Le groupe des automorphismes intérieurs de Q est isomorphe à Q modulo son centre, et est par conséquent aussi isomorphe au groupe de Klein. Le groupe des automorphismes de Q est isomorphe à S4, le groupe symétrique sur quatre lettres. Le groupe des automorphismes extérieurs de Q est alors S4/V qui est isomorphe à S3. Le groupe des quaternions Q peut être vu comme agissant sur les 8 éléments non nuls de l'espace vectoriel à 2 dimensions sur le corps fini F3. Pour une image, voir Visualisation de GL(2,p).

Groupe de quaternions généralisé

Un groupe est appelé un groupe de quaternions généralisé s'il possède une présentation

Q_{2^n}=\langle x,y \mid x^{2^{n-1}} = 1, x^{2^{n-2}} = y^2, yxy^{-1} = x^{-1}\rangle

pour un certain entier n ≥ 3. L'ordre de ce groupe est 2n. Le groupe de quaternions ordinaire correspond au cas n = 3. Le groupe de quaternions généralisé peut être réalisé comme le sous-groupe des quaternions unités engendré par

x = e^{2\pi i/2^{n-1}}
y = j\,

Un tel groupe peut être mis en relation avec un groupe diédral d'ordre 2n-1 par la suite exacte :

1\to <a>\to Q_{2^n}\to D_{2^{n-1}}\to 1

Les groupes de quaternions généralisés sont membres d'une famille encore plus large de groupes dicycliques. Les groupes de quaternions généralisés ont la propriété que chaque sous-groupe abélien est cyclique. Il peut être montré qu'un p-groupe fini avec cette propritété (chaque sous-groupe abélien est cyclique) est soit cyclique ou un groupe de quaternions généralisé comme défini ci-dessus.

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Groupe de quaternions ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Groupe de quaternions de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Groupe De Quaternions — Diagramme du cycle de Q. Chaque couleur précise une série de puissances d un élément quelconque connecté à l élément neutre (1). Par exemple, le cycle rouge reflète le fait que i 2 = 1, i 3 = i  et i 4 = 1. Le cycle rouge… …   Wikipédia en Français

  • Groupe des quaternions — Graphe des cycles de Q. Chaque couleur précise une série de puissances d un élément quelconque connecté à l élément neutre (1). Par exemple, le cycle rouge reflète le fait que i 2 = 1, i 3 = i  et i 4 = 1. Le cycle rouge… …   Wikipédia en Français

  • Representations du groupe des quaternions — Représentations du groupe des quaternions En mathématiques les représentations du groupe des quaternions sont un exemple d application de la théorie des représentations d un groupe fini. Il illustre le théorème d Artin Wedderburn et met en… …   Wikipédia en Français

  • Représentation du groupe des quaternions — Représentations du groupe des quaternions En mathématiques les représentations du groupe des quaternions sont un exemple d application de la théorie des représentations d un groupe fini. Il illustre le théorème d Artin Wedderburn et met en… …   Wikipédia en Français

  • Représentations du groupe des quaternions — En mathématiques les représentations du groupe des quaternions sont un exemple d application de la théorie des représentations d un groupe fini. Il illustre le théorème d Artin Wedderburn et met en évidence un corps gauche (c est à dire non… …   Wikipédia en Français

  • Groupe de quaternion — Groupe de quaternions Diagramme du cycle de Q. Chaque couleur précise une série de puissances d un élément quelconque connecté à l élément neutre (1). Par exemple, le cycle rouge reflète le fait que i 2 = 1, i 3 = i  et i 4 =… …   Wikipédia en Français

  • Groupe quaternionien — Groupe de quaternions Diagramme du cycle de Q. Chaque couleur précise une série de puissances d un élément quelconque connecté à l élément neutre (1). Par exemple, le cycle rouge reflète le fait que i 2 = 1, i 3 = i  et i 4 =… …   Wikipédia en Français

  • Groupe quaternionique — Groupe de quaternions Diagramme du cycle de Q. Chaque couleur précise une série de puissances d un élément quelconque connecté à l élément neutre (1). Par exemple, le cycle rouge reflète le fait que i 2 = 1, i 3 = i  et i 4 =… …   Wikipédia en Français

  • Groupe De Lie — En mathématiques, un groupe de Lie est un groupe qui est continu, c est à dire que chaque élément du groupe peut être approché d aussi près que l on veut par une suite d autres éléments du groupe. Un groupe de Lie est en fait un peu plus qu un… …   Wikipédia en Français

  • Groupe de lie — En mathématiques, un groupe de Lie est un groupe qui est continu, c est à dire que chaque élément du groupe peut être approché d aussi près que l on veut par une suite d autres éléments du groupe. Un groupe de Lie est en fait un peu plus qu un… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”