Chloroplastes

Chloroplastes

Chloroplaste

Chloroplastes dans des cellules végétales de Plagiomnium observées au microscope optique

Les chloroplastes sont des organites présents dans le cytoplasme des cellules eucaryotes photosynthètique (plantes, algues). Ils sont sensibles aux expositions des différentes ondes du spectre lumineux. Ils jouent un rôle essentiel dans le fonctionnement d'une cellule végétale car ils permettent de capter la lumière à l'origine de la photosynthèse. Par l'intermédiaire de la chlorophylle qu'ils possèdent et de leurs ultrastructures, ces organites sont capables de transférer l'énergie véhiculée par les photons à des molécules chimiques (eau). Les chloroplastes jouent un rôle important dans le cycle du carbone, par la transformation du carbone athmosphérique en carbone organique. Les chloroplastes appartiennent à une famille d'organites appelés les plastes, ceux ci sont le fruit de l'endosymbiose d'une cyanobactérie, il y a environ 1,5 milliard d'années.

Sommaire

Historique

Le chloroplaste a été découvert seulement après les recherches scientifiques sur les plantes. Les premières recherches ont commencé par Joseph Priestley en 1771. Il s'était intéressé à l’étude des gaz dont il en identifia plusieurs. Plus tard, il démontra que les plantes sont capables de régénérer les gaz qui viennent des animaux.

Quatre ans plus tard, Jan Ingenhousz reprend les travaux de Priestley et montre que le dégagement d’oxygène se produit uniquement à la lumière. Pendant la nuit, les plantes rejettent un gaz rendant impossible la combustion d’une bougie.

À la fin du XVIIIe siècle, les recherches ont conclu que les plantes respirent comme tout le monde. En 1837, Henri Dutrochet découvre que le pigment vert dans les feuilles est la chlorophylle. En 1862, Julius von Sachs, le plus grand physiologiste de son temps, prouve que l’assimilation chlorophyllienne se déroule dans des chloroplastes. Ce n'est qu'en 1898 que le scientifique Charles Reid Barnes invente le terme photosynthèse.

Localisation

La plupart des parties aériennes de la plante contiennent des chloroplastes. Ce sont les feuilles qui en contiennent le plus. On en compte environ un demi-million par millimètre carré de feuille. Leur lieu de prédilection est tout particulièrement le mésophylle de la feuille c’est-à-dire le tissu interne de la feuille. Mais divers tissus n'en contiennent pas ou très peu : les cellules de revêtement de l'épiderme, les cellules stomatiques aquifères (des groupes de cellules qui évacuent de l'eau chez certaines feuilles)...

Structure

Ultrastructure d'un chloroplaste:
1-membrane externe
2-espace intermembranaire
3-membrane interne (1+2+3: enveloppe)
4-stroma (fluide aqueux)
5-lumen du thylakoïde
6-membrane du thylakoïde
7-granum (thylakoïdes accolés)
8-thylakoïde inter-granaire (lamelle)
9-grain d'amidon
10-ribosome
11-ADN
12-plastoglobule (gouttelette lipidique)

La taille des chloroplastes est de l'ordre du micron. Ils prennent souvent la forme de disques aplatis de 2 à 10 microns de diamètre pour une épaisseur d'environ 1 micron. Le chloroplaste est un organite composé de deux membranes (1 et 3) séparées par un espace inter-membranaire (2). Il contient un réseau membraneux constitué de sacs aplatis nommés thylakoïdes (8) qui baignent dans le stroma (4) (liquide intra-chloroplastique). Les thylakoïdes sont composés d'un lumen (5) entouré d'une membrane (6), et contiennent de la chlorophylle (pigments verts) et des caroténoïdes (pigments jaune orange). Un empilement de thylakoïdes se nomme granum (7) (au pluriel : des grana). D'autre part, le stroma contient quelques réserves sous forme d'amidon (9), et des structures lipidiques dont le rôle est encore mal compris, les plastoglobules(12).

Génome chloroplastique

De plus, ces organites contiennent de l'ADN regroupé en nucléoides (11), chaque chloroplaste peut contenir jusqu'à 100 copies du génome[1]. Les molécules d'ADN du génome chloroplastique sont généralement linéaires ou ramifiées[2]. Le génome chloroplastique est trés réduit, 37 à 220kb et contient généralement une centaine de gènes, alors que par comparaison celui d'une cyanobactérie (origine des chloroplastes) fait plusieurs mégabases et comporte plusieurs milliers de gènes .

Les ribosomes (10) sont constitués d'ARNr, syntétisés dans les chloroplastes, et de protéines codées par les génomes nucléaires et chloroplastiques.

L'ADN du chloroplaste ne lui permet pas de subvenir à tous ses besoins ; il y a une coopération entre la cellule et le chloroplaste. Par exemple, le Ribulose 1,5 Bisphosphate Carboxylase/Oxygénase (ou Rubisco) est composée de deux parties : une grande et une petite qui sont répétées chacune huit fois. La grosse sous-unité (55 kDa) est formée dans le chloroplaste et la petite sous-unité (15 kDa) est synthétisée dans le cytoplasme de la cellule, sous la forme de précurseurs, puis pénètre dans le chloroplaste. En règle générale, les protéines codées par l'ADN nucléaire mais destinées à une localisation chloroplastique sont synthétisées sous la forme de précurseurs pourvus d'un signal de transit en N-terminal, qui consiste en un peptide d'une cinquantaine d'acides aminés (taille variable d'une protéine à une autre), et qui sera clivé au moment du passage à l'intérieur du chloroplaste pour aboutir à la protéine mature. Les protéines destinées à la membrane des thylacoides du chloroplaste peuvent même être pourvues de deux séquences de transit, la première pour entrer dans le chloroplaste, la deuxième pour être intégrée dans la membrane. Ces mécanismes font intervenir deux complexes protéiques connus sous le nom de TIC et TOC.

Rôle

Chloroplaste (microscope électronique)
Article détaillé : photosynthèse.

Le chloroplaste est le siège de à la photosynthèse. Il absorbe l’énergie lumineuse pour la transformer en énergie chimique sous forme d'adénosine triphosphate (ATP). Il intervient dans la phase photochimique de la photosynthèse.

Le chloroplaste absorbe l'ensemble du spectre de la lumière visible mis à part le vert, raison pour laquelle les feuilles des plantes ont un aspect vert. La chlorophylle se trouve dans la membrane des thylakoïdes. Les différentes étapes de la photosynthèse qui convertissent la lumière en énergie chimique se déroulent dans les thylakoïdes tandis que les étapes de conversion de l'énergie en glucide se déroulent dans le stroma du chloroplaste.

Le chloroplaste joue aussi un rôle dans la fixation du carbone, de l'azote, du souffre ou encore de la biosynthèse des lipides.

Origine

Les chloroplastes sont le résultat d'une endosymbiose, c’est-à-dire que des cellules eucaryotes primitives ont ingéré des cyanobactéries il y a 1,5 ou 1,6 milliard d'années, puis ont vécu en symbiose avec ces dernières[3]. Par comparaison les mitochondries proviennent de l'endosymbiose d'une alphaprotéobactérie par une cellule primitive il y a environ 2 milliards d'années.

Il y a deux types d'endosymbiose :

  • endosymbiose primaire : une cellule eucaryote ingère une bactérie, celle-ci devenant un chloroplaste avec deux membranes ayant pour origine la membrane de la bactérie pour la membrane interne, la membrane cytoplasmique pour la membrane externe (Rhodophyta et Chlorobionta),
  • endosymbiose secondaire : une cellule eucaryote ingère une autre cellule eucaryote possédant un chloroplaste; le cytoplasme et le noyau dégénère pour ne laisser que le chloroplaste à 4 membranes (2 issues de l'endosymbiose primaire + la membrane cytoplasmique de la cellule phagocytée + la membrane invaginée de la cellule qui phagocyte).

Suite à une réduction du nombre de membranes, on connaît aussi des chloroplastes à trois membranes chez certains Dinophytes.

On distingue une lignée verte et une lignée rouge selon que les plastes d'endosymbiose secondaire sont issus d'algues respectivement verte et rouge.

Voir aussi

Comparaison

Les différents types de plastes.
Interconversions plastidiales.

Articles connexes

Liens externes

Références

  1. (en) Bendich AJ, « Why do chloroplasts and mitochondria contain so many copies of their genome? », dans bioessays, vol. 6, no 6, juin 1987, p. 279-82 [lien PMID] 
  2. (en) Bendich AJ, « Circular chloroplast chromosomes: the grand illusion. », dans the Plant Cell, vol. 16, no 7, juillet 2004, p. 1661-6 [lien PMID] 
  3. (en) McFadden, G., Gilson, P., Hofmann, C., Adcock, G. and Maier, U, « Evidence that an Amoeba Acquired a Chloroplast by Retaining Part of an Engulfed Eukaryotic Alga », dans PNAS, vol. 91, 1994, p. 3690-3694 

Bibliographie

  • Portail de la biologie cellulaire et moléculaire Portail de la biologie cellulaire et moléculaire
  • Portail de la botanique Portail de la botanique
Ce document provient de « Chloroplaste ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Chloroplastes de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • CHLOROPLASTES — Dans les cellules chlorophylliennes des Végétaux supérieurs, il existe deux modes de fixation du gaz carbonique: le type de fixation en C3 et le type en C4 ainsi désignés en fonction du nombre d’atomes de carbone de la molécule photosynthétisée… …   Encyclopédie Universelle

  • Chloroplaste — Chloroplastes dans des cellules végétales de Plagiomnium observées au microscope optique Les chloroplastes sont des organites présents dans le cytoplasme des cellules eucaryotes photosynthètique (plantes, algues). Ils sont sensibles aux… …   Wikipédia en Français

  • PLASTES — Les plastes sont des organites propres aux cellules des végétaux chlorophylliens, c’est à dire des Algues, des Bryophytes et des végétaux vasculaires ou végétaux supérieurs. Les chlorophylles, pigments de la photosynthèse, se trouvent… …   Encyclopédie Universelle

  • PHOTOSYNTHÈSE — Le terme «photosynthèse» signifie littéralement: synthèse réalisée à l’aide de l’énergie lumineuse. Bien que, en ce sens, différentes réactions synthétiques puissent avoir lieu indépendamment des êtres vivants, il est d’usage de ne désigner par… …   Encyclopédie Universelle

  • RIBOSOMES — Les protéines, qui façonnent le phénotype de tout organisme et en sont des unités fonctionnelles (enzymes), sont synthétisées au cours de réactions matricielles hautement spécifiques. Les instructions pour la synthèse de chaque protéine sont… …   Encyclopédie Universelle

  • GÉNOME - Génome plastidial — Une plante verte contient trois types d’organites, le noyau, les mitochondries et les plastes qui répliquent, transcrivent et expriment leur information génétique de manière coordonnée. L’existence d’une hérédité extranucléaire liée à un organite …   Encyclopédie Universelle

  • Hypothese de l'endosymbiose — Théorie endosymbiotique La théorie endosybiotique ou hypothèse de l endosymbiose est l hypothèse selon laquelle les plastes et mitochondries des cellules eucaryotes proviennent de l endocytose de procaryotes avec lesquelles ils auraient entretenu …   Wikipédia en Français

  • Hypothèse De L'endosymbiose — Théorie endosymbiotique La théorie endosybiotique ou hypothèse de l endosymbiose est l hypothèse selon laquelle les plastes et mitochondries des cellules eucaryotes proviennent de l endocytose de procaryotes avec lesquelles ils auraient entretenu …   Wikipédia en Français

  • Hypothèse de l'endosymbiose — Théorie endosymbiotique La théorie endosybiotique ou hypothèse de l endosymbiose est l hypothèse selon laquelle les plastes et mitochondries des cellules eucaryotes proviennent de l endocytose de procaryotes avec lesquelles ils auraient entretenu …   Wikipédia en Français

  • Théorie endosymbiotique — La théorie endosymbiotique, ou hypothèse de l endosymbiose, est l hypothèse selon laquelle les plastes et mitochondries des cellules eucaryotes proviennent de l endocytose de procaryotes avec lesquelles ils auraient entretenu une relation… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”