- Altitude
-
L'altitude est l'élévation verticale d'un lieu ou d'un objet par rapport à un niveau de base. C'est une des composantes géographique et biogéographique qui explique la répartition de la vie sur terre.
L'altitude est aussi une grandeur qui exprime un écart entre un point donné et un niveau de référence ; par convention, sur Terre ce niveau est le plus souvent le niveau de la mer (ou « niveau zéro »). Les sommets sont associés à une altitude, calculée par divers moyens indirects (géodésie, triangulation). L'altitude est également une donnée exogène utile pour le calcul numérique dans divers domaines : météorologie, physique, biologie.
En aviation, l'altitude est actuellement mesurée en pieds, sauf dans quelques pays tels que la Russie, où elle est exprimée en mètres. Cependant, jusqu'en 1945, les altitudes étaient exprimées exclusivement en mètres dans toute l'Europe exceptée la Grande-Bretagne. L'adoption du pied est uniquement l'effet de la domination américaine à la fin de la guerre.[réf. nécessaire]
Sommaire
Effets de l'altitude
Certains champs physiques varient en fonction de l'altitude : diminution de la pression atmosphérique variation de la température et du couple thermohygrométrique, des rayonnements solaires notamment. Des réactions particulières des organismes face à ces nouvelles conditions sont visibles, particulièrement chez les végétaux, mais aussi chez les animaux ou les champignons et lichens.
Plutôt que d'effets de l'altitude, il conviendrait de parler de variations liées à l'élévation, car l'altitude est une donnée brute qui n'a aucune conséquence par elle-même. Il faut distinguer deux types d'effets :
- les changements brutaux et ponctuels dû à l'élévation rapide ;
- les adaptations de moyen et long termes des organismes en altitude.
Les premiers effets sont spectaculaires et bien connus des alpinistes ; les seconds sont plus discrets et affectent aussi bien les hommes que l'écosystème. En particulier les sols d'altitudes sont souvent plus pauvres, plus acides, moins épais (diminution de la réserve utile des sols et du taux de saturation, qui peut exacerber le phénomène de dépérissement forestier) [1]
Variations de champs physiques
Température
La variation de la température selon l'altitude dépend de l'endroit où l'on se situe dans l'atmosphère : troposphère, stratosphère, mésosphère ou encore la thermosphère.
Pression atmosphérique
Elle diminue avec l'altitude de manière exponentielle. Au niveau de la mer elle vaut 1 atmosphère (soit 760 mmHg soit 1013,25 mb) alors qu'à 1 000 m elle ne vaut plus que 89 859 Pa (674 mmHg), à 4 800 m 55 462 Pa (416 mmHg) et à 8 848 m 31 464 Pa (236 mmHg).
Intensité de la pesanteur
Celle-ci varie en fonction de la planète sur laquelle on se trouve et de l'altitude. Elle est inversement proportionnelle au carré de la distance par rapport au centre. Sur Terre sa valeur est 9,814 m.s-2 au niveau de la mer, 9,811 m.s-2 à 1 000 m et 9,802 m.s-2 à 4 000 m.
Il s'agit là de l'attraction réelle de la pesanteur. Pour un corps immobile dans le repère terrestre (donc non sujet à l'accélération de Coriolis) la pesanteur apparente est égale à la précédente diminuée de l'accélération centrifuge ω2r où ω est la vitesse de rotation de la terre (360 degrés par jour) et r la distance à l'axe des pôles. Cette accélération centrifuge est nulle aux pôles et vaut approximativement 0,034 m.s-2 à l'équateur ; la pesanteur apparente n'y est donc plus que d'environ 9,780.
Adaptation du corps à l'altitude
Réponse à court terme (quelques jours)
Chez l’homme les effets de l’altitude sont principalement dus à la diminution de la pression partielle en dioxygène dans l’air inspiré, et à la baisse de température. En effet, au repos, ces éléments causent à court terme une hyperventilation, augmentation de la ventilation, une tachycardie, augmentation de la fréquence cardiaque, ainsi qu'une diurèse (élimination d'une partie du volume plasmatique (plasma sanguin) destiné à augmenter la proportion de globules rouges dans le sang).
Réponses à long terme (plusieurs semaines)
À plus long terme (à partir de 3 semaines environ), on observe une augmentation importante du nombre de globules rouges (hématocrite) permettant un transport de l’oxygène accru dans le sang. Ceci est la conséquence d'un pic d'EPO dans les premiers jours d'exposition à l'hypoxie d'altitude. La consommation maximale d'oxygène (également nommée VO2 max) baisse en fonction de l’altitude. Ainsi, au niveau de la mer, l’homme est à 100 % de ces possibilités, alors qu’à 4 810 mètres (sommet du mont Blanc), il ne peut en disposer que de 70 % et seulement 20 % à 8 848 mètres (sommet de l'Everest)[réf. nécessaire].
L'effet « augmentation de la quantité de globules rouges » est particulièrement recherché par certains sportifs, c'est la raison majeure de l'organisation de stage en altitude, parfois à plus de 3 000 mètres. Toutefois, cette polyglobulie peut entraîner dans certains cas un excès de globules rouges et la formation de caillots sanguins peut alors obstruer les veines et causer une thrombose veineuse profonde (phlébite) qui peut entraîner la mort. La concentration en globules rouges (hématocrite) du sang de certaines populations vivant à haute altitude (Andes) est naturellement plus élevée.
Peut-on vivre à 4 000 mètres d'altitude ?
Un exemple : les habitants de Potosi en Bolivie andine sont perchés à 4 040 m. Ils sont tout à fait habitués à ces conditions : leur sang est plus riche en globules rouges qui acheminent l'oxygène jusqu'aux organes. Par contre, pour les visiteurs, c'est un peu plus compliqué. La pression de l'air et de l'oxygène diminuées, leur capacité physique se réduit de 30 à 40 % en dépit de l'accélération cardio-respiratoire. Il faut environ deux semaines d'adaptation. Entre-temps, le visiteur peut souffrir du mal aigu des montagnes : maux de tête, nausées, œdèmes, etc.
Cures d'altitude
Des cures d'altitude — climatothérapie — sont aujourd'hui encore recommandées pour soulager temporairement certaines crises d'asthme[2],[3] surtout dans le cas d'asthmes d'origine allergénique[4]. Concernant la tuberculose les avis sont partagés[5] ; en 2008 toutefois une étude turque trouvait une corrélation négative entre altitude et tuberculose : l'influence de l'altitude sur l'incidence de la tuberculose proviendrait « en partie de la valeur de la pression partielle en oxygène dans la mesure où de fortes pressions en oxygène sont nécessaires à la propagation de Mycobacterium tuberculosis[6]. » Concernant la coqueluche, on a pu également recommander non seulement des séjours en altitude[7] — peu documentés « » mais aussi des « vols coqueluche » (ou leur simulation en caisson hypobare).
À l'inverse, les personnes souffrant de drépanocytose doivent éviter les hautes altitudes.
Calcul de l'altitude
Le calcul d'une altitude revient toujours à mesurer un écart entre un niveau de départ et le point dont on souhaite trouver l'élévation par rapport à ce niveau (dénivelé).
Dans les pays dotés d'un institut de géographie national (souvent militaire à l'origine) comme c'est le cas en Belgique et en France, il fut procédé par des géomètres à des nivellements généraux par cheminements altimétriques. La précision d'ensemble de ces nivellements est de l'ordre du centimètre. La précision relative entre deux repères voisins est millimétrique.
Dans les régions ou le cheminement est techniquement impossible (régions montagneuses ou avec un relief chaotique) les altitudes sont anciennement été déterminées en fonction de la gravité terrestre mais cette méthode est relativement difficiles à mettre en œuvre et très peu précise compte tenu des variations de gravité provoquées par les masses montagneuse ou bien en fonction de la variation de pression atmosphérique (méthode principalement utilisée au siècle passé par les alpinistes pour déterminer les altitudes des pics montagneux).
Avec apparition de l'aviation, de nouvelles méthodes basées sur la photogrammétrie et les ortho-photo-couple, ont vu le jours. Ces méthodes permettent de déterminer avec une précision de quelques mètres, les altitudes et ce de façon indirect, sans mesures sur le terrain et ce sur des zones .
Certains satellites fournissent également des STRM (Shuttle Radar Topography Mission) sur l'ensemble de la planète avec cependant une précision de plusieurs centaines de mètres ou de plusieurs kilomètres.
Impossibilité de définir correctement l'altitude
Il a longtemps été très difficile de définir le concept d'altitude.
Tout d'abord il fallait définir ce qu'est le niveau de base.
Il était d'usage de considérer comme niveau de base le niveau des mers, dont la surface est difficile à mettre en équation: c'est une surface qui bouge en fonction d'éléments astronomiques comme la Lune, le Soleil ou les planètes (phénomène de marée), qui n'est pas une surface équipotentielle (à cause entre autres des courants et de la variation de salinité), donc n'est pas assimilable au géoïde terrestre, et qui de toute façon n'existe pas à la verticale d'un lieu terrestre donné.
La méthode ancienne, qui consistait à cheminer entre le niveau moyen de la mer et un lieu donné en mesurant à chaque fois la différence de niveau dh, est mathématiquement problématique, parce que le résultat dépend du chemin suivi, en d'autres termes ∫ dh n'est pas une intégrale parfaite. En revanche, l'énergie à dépenser pour aller d'un point à un autre, qui est ∫ g dh, g étant la gravité en chaque point, ne dépend pas du chemin suivi. L'altitude était alors calculée en mesurant régulièrement g, et en divisant la valeur obtenue par un g0 moyen, le choix de ce g0 conditionnant bien sûr le résultat.
En octobre 1957, l'avènement de l'ère spatiale a donné naissance à la géodésie spatiale, avec des satellites équipés de réflecteurs laser puis d'horloges ultra-stables (permettant des mesures très précises de temps de trajet ou de décalages Doppler). L'arrivée de systèmes spatiaux opérationnels (Transit, puis GPS, DORIS et, dans le futur, Galileo), a permis une autre définition de l'altitude : la distance du point à l'origine du référentiel terrestre utilisé par ces systèmes, qui coïncide à peu près avec le centre de gravité de la Terre. Le système spatial, (GPS ou DORIS), donne alors un triplet XYZ dans un repère orthonormé, et il suffit de projeter ce point dans un système cartographique pour obtenir l'altitude, le résultat dépendant, (au second ordre), de la projection choisie.
Méthodes pratiques
- Le calcul de la hauteur de la grande pyramide de Gizeh par Ératosthène est déjà une sorte de calcul d'altitude, entre le sommet du monument et le sol. La méthode utilisée, une application du fameux Théorème de Thalès, a été reprise pour le calcul de l'altitude de sommets dégagés. La marge d'erreur associée est assez importante.
- Une méthode utilisée sur le terrain et qui ne nécessite pas d'outil fait intervenir la visée par approximation. En région montagneuse, on peut estimer qu'un sapin adulte est haut de trente mètres en moyenne. Par superposition, on peut estimer une altitude ou un écart avec une marge d'erreur moyenne, souvent acceptable.
- En utilisant une carte géographique et une boussole graduée, la méthode de la triangulation permet de connaître l'altitude d'un point proche.
- L'altimètre est un instrument qui mesure l'altitude en se basant sur la relation entre l'élévation et la pression atmosphérique. Cette relation n'est pas linéaire, et subit des variations non négligeables dues à l'évolution des masses d'air pendant la prise d'altitude par le marcheur qui utilise l'altimètre. C'est donc un moyen de mesure moins fiable qu'il n'y paraît : il faut veiller à étalonner aussi souvent que possible l'altimètre aux points dont l'altitude est connue. Les altimètres sont utilisés dans les ballons-sondes.
Méthodes modernes
Les mesures d'altitude par les instruments modernes sont d'une précision bien supérieure à ce qu'il est possible de faire à l'œil ou au compas. Les satellites sont mis à profit pour calculer et mettre à jour les « hauteurs » des points de la planète, sommets ou non. À la différence des méthodes terrestres qui utilisent un référentiel dynamique tenant compte des variations locales du champ de pesanteur (le géoïde) et donnent par là-même de véritables « altitudes », les satellites fournissent une hauteur à partir d'un ellipsoïde de référence (IAG GRS80). Les écarts entre géoïde et ellipsoïde sont variables selon le lieu et peuvent atteindre la centaine de mètres. Des modèles de géoïde peuvent cependant être intégrés dans un programme de calcul qui permet alors de retrouver les altitudes à partir des mesures satellitaires. La précision dépend alors en grande partie de la finesse du modèle.
Altitudes dans le Système international
Dans le Système international d'unités, les altitudes sont exprimées par rapport au niveau moyen de la mer en mètres, le niveau zéro étant fixé par un laboratoire.
En Allemagne (RFA)
Pour l'Allemagne la cote de référence est définie depuis 1879 par la moyenne de l’échelle fluviale d’Amsterdam et porte le nom de Normalnull (NN en abrégé).
En Allemagne de l'Est (RDA) depuis 1958 jusqu'à la réunification
Pour l'Allemagne de l'Est sa désignation était HN (Höhennormal) et sa cote de référence était établie à l’échelle fluviale de Kronstädt qui était plus basse de 14 cm. Cependant à Berlin-Est ainsi que sur le réseau ferré de la RDA et pour les eaux navigables intérieures les cotes de référence de la RFA furent toujours appliquées.
En Autriche
Pour l'Autriche le point de référence est défini depuis 1875 au niveau moyen de la mer Adriatique à Trieste en Italie, environ 27 cm en dessous du Normalnull d'Amsterdam.
En Belgique
Pour la Belgique, le système de référence est le DNG (Deuxième Nivellement Général), défini depuis 1968. La réitération de ce réseau a été réalisée de 1981 à 2000. La référence est le repère GIKMN situé à l'Observatoire Royal de Belgique à Uccle ayant une altitude de 100,174 mètres correspondant à la cote définie en 1892 ramenée au Zéro D (0,3865 m plus haut que le niveau H ou niveau hydrographique de la marine). Anciennement, on utilisait le niveau moyen des mers TAW (Tweede Algemene Waterpassing) mais cette référence datant de 1834 a été définitivement abandonnées à partir de 1946 de par son manque de précision.
Au Canada
Le Canada utilise la hauteur du niveau moyen des océans bordant le pays comme plan de référence altimétrique, de sorte que l'altitude est simplement une hauteur au-dessus de ce niveau moyen de la mer.
En France
Pour la France (altitude des cartes IGN), il est situé à Marseille, et a été déterminé grâce à 12 années d'enregistrement de marégraphie entre 1885 et 1897.
Article détaillé : Nivellement général de la France.Aux Pays-Bas
Pour les Pays-Bas, le système retenu est le NAP (Normaal Amsterdams Peil) qui, comme son nom l'indique, se base sur le niveau de la mer à marée basse à Amsterdam.
En Slovénie
Pour la Slovénie le point de référence est à Trieste, comme pour l'Autriche, défini ainsi en 1900.
En Suisse
Pour la Suisse, le repère de la Pierre du Niton (RPN), dans la rade de Genève, est utilisé pour toutes les altitudes et est déterminé depuis 1902 à 373,6 m au-dessus du niveau moyen de la mer (mesures du marégraphe de Marseille).
Autres planètes ou satellites
Lune
Sur la Lune, on mesure les altitudes des sommets relativement à une distance donnée à son centre. Dans les années 1990, la mission Clementine a publié des valeurs basées sur le chiffre de 1 737 400 mètres.
Mars
Sur Mars, en l'absence d'océan, l'origine des altitudes a été fixée de façon arbitraire : c'est l'altitude ayant une pression atmosphérique moyenne de 615 pascals. Cette pression a été choisie parce qu'elle correspond à la pression du point triple de l'eau (273,16 K et 615 Pa), et que le niveau ainsi défini est proche du niveau moyen de la surface martienne (sur Terre, c'est la pression atmosphérique à 35 km d'altitude).
Notes et références
- Relation between ecological conditions and fir decline in a sandstone region of the Vosges mountains (northeastern France) (PDF) par Anne-Laure Thomas et al. (Ann. For. Sci. 59 (2002) 265-273 DOI:10.1051/forest:2002022)
- ISBN 2-84650-020-7), page 205, lire en ligne Guy Dutau, Guide pratique de l'asthme de l'enfant, MMI éditions, 2002 (
- ISBN 2-7040-1047-1), page 226, lire en ligne Michel Odièvre, Pédiatrie, Volume 1, éditions Doin, coll. « Inter-Med » (
- Climatothérapie dans l'asthme : étude critique, Revue Française d'Allergologie et d'Immunologie Clinique, Volume 37, Issue 8, 1997, pages 1123-1134 J.-C. Bessot,
- lire en ligne Pierre Guillaume, « Tuberculose et montagne - Naissance d'un mythe », Vingtième Siècle - Revue d'histoire, vol. 30, n°30, 1991, pages 32-39,
- Médecine : l'altitude décroît l'incidence de la tuberculose
- ISBN 2-7475-8432-1), page 223,lire en ligne Marc Boyer, Histoire générale du tourisme du XVIe au XXIe siècle, L'Harmattan, 2005 (
Voir aussi
Articles connexes
- Mal aigu des montagnes lié à l'altitude
- Niveau de la mer
- Référent altimétrique
- Cote Z
- WGS 84
Liens externes
- (en) Altitude.nu
- (en) Altitude.org
- (en) Altitude de toutes les villes et villages du monde
- (en) Calcul d'altitude en fonction de la latitude et de la longitude
- (fr) Fiche didactique de l'Ign sur le calcul des altitudes
- (fr) Association pour la Recherche en Physiologie de l'Environnement (ARPE)
- (fr) Les réseaux de nivellement, Institut Géographique National
Wikimedia Foundation. 2010.