Excitotoxicite

Excitotoxicite

Excitotoxicité

L'excitotoxicité est un processus pathologique d'altération et de destruction neuronale ou neurotoxicité, par hyperactivation par l'acide glutamique et ses analogues, regroupés sous la dénomination d'acides aminés excitateurs, des récepteurs excitateurs neuronaux comme les récepteurs NMDA et AMPA (α-Amino-3-hydroxy-5-méthylisoazol-4-propionate). Ces excitotoxines comme le NMDA 5(N-méthyl-D-aspartate)) et l'acide kaïnique, ou les glutamates en trop grande concentration, en se liant à ces récepteurs provoquent [1] [2] une entrée massive dans la cellule d'ion calcium. Le Ca++ active à son tour un certain nombre d'enzymes dont des phospholipases C, des endonucléases et des protéases telle la calpaïne. Ces enzymes dégradent alors les structures cellulaires : cytosquelette, membrane cellulaire, ADN.

Ce mécanisme physiopathologique est incriminé dans un certain nombre de maladies neurologiques comme l'épilepsie et les accidents vasculaires cérébraux, ou neurodégénératives du système nerveux central comme la sclérose en plaques, la maladie d'Alzheimer, la sclérose latérale amyotrophique, la fibromyalgie, la maladie de Parkinson ou enfin la chorée de Huntington.

Sommaire

Historique

Article connexe : Glutamate monosodique.

L'excitotoxicité a été observée pour la première fois dans le cas du glutamate monosodique en 1957. L'expérience initiale consistait à nourrirdes souris nouveau-nées avec du glutamate monosodique. Il a été constaté la destruction de neurones dans la couche interne de la rétine[3]. Vers 1969, John Olney découvrit que ce phénomène n'était pas limité à la rétine, mais concernait tout le cerveau, et il le nomma alors excitotoxicité. Il établit également que cette mort cellulaire ne concernait que les neurones post-synaptiques, que la neurotoxicité des agonistes du glutamate était proportionnelle à leur efficacité à activer les récepteurs aux glutamates, et que les antagonistes des glutamates pouvait inhiber cette neurotoxicité[4].

Physiopathologie

L'excitotoxicté peut être provoquée par des substances synthétisées par l'organisme (excitotoxines endogènes). Le glutamate est un premier exemple d'excitotoxine dans le cerveau, mais c'est aussi, paradoxalement, le neurotransmetteur excitateur principal dans le système nerveux central des mammifères[5]. Dans des conditions normales la concentration du glutamate dans la fente synaptique peut atteindre 1mM, pour décroître ensuite rapidement en quelques millisecondes. Si cette concentration ne diminue pas ou au contraire augmente, le neurone s'auto-détruit par apoptose.

Ce mécanisme pathogène est aussi susceptible de se produire après lésion cérébrale. Un traumatisme cérébral ou un accident vasculaire cérébral peuvent être à l'origine d'une insuffisance d'irrigation sanguine dénommée ischémie. L'ischémie est suivie d'une accumulation de glutamates et d'aspartates dans le liquide extracellulaire, qui aggravée par une déficience en oxygène et en glucose provoque alors la mort cellulaire. On appelle cascade ischémique la cascade d'évènements biochimiques résultant de l'ischémie et impliquant l'excitotoxicité. Pour limiter les conséquences de l'ischémie et de l'activation des récepteurs au glutamate, le patient porteur d'une lésion cérébrale peut être mis en coma artificiel profond pour diminuer le métabolisme cérébral, donc sa consommation en glucose et oxygène, et préserver l'énergie nécessaire pour éliminer les glutamates par transport actif. Remarque : l'objectif principal du coma induit est de diminuer la pression intracranienne et non pas de diminuer le métabolisme cérébral (à vérifier).

L'une des conséquences néfastes de l'excès de calcium dans le cytosol est l'ouverture des pores membranaires mitochondriaux de type PMT quand cet organite absorbe trop de calcium. Cette ouverture provoque le relargage par la mitochondrie, de protéines pouvant mener à l'apoptose, son gonflement et l'excrétion de plus de calcium encore. De plus la production d'adénosine triphosphate ou ATP peut s'arrêter et l'enzyme ATP synthase peut se mettre à hydrolyser l'ATP au lieu de la synthétiser[6].

La production d'ATP inadaptée résultant du traumatisme encéphalique est à même de perturber le gradient de certains ions. Or ces gradients ioniques sont nécessaires à l'activité des transporteurs de glutamate qui l'éliminent de l'espace intercellulaire. La perte de ces gradients va non seulement arrêter l'élimination du glutamate, mais encore inverser le sens des transporteurs et aboutir ainsi à une élévation plus grande encore des concentrations en aspartate et glutamate du milieu intercellulaire, et donc une activation majorée et néfaste des récepteurs au glutamate[7].

Le mécanisme biologique moléculaire d'entrée du calcium n'est pas le seul responsable de l'apoptose induite par l'excitotoxicité. Récemment[8], il a été remarqué que l'activation des récepteurs extrasynaptiques au NMDA, déclenchée par l'exposition au glutamate ou par des conditions d'ischémie ou d'hypoxie, inactive le facteur transcriptionnel [9] CREB (Cyclic adenosine monophosphate response element binding protein) qui à son tour provoque la suppression du potentiel de membrane de la mitochondrie et l'apoptose. A l'opposé, l'activation des récepteurs synaptiques au NMDA n'active que la voie métabolique du CERB qui active à son tour le BDNF (brain-derived neurotrophic factor) sans déclencher d'apoptose.

L'aspartame

Le débat actuel concernant le phénomène d'excitotoxicité le plus connu du grand public, est celui relatif à l'aspartame. Environ 40 % (en masse) de l'aspartame absorbé est métabolisé en acide aspartique, une excitotoxine. Comme l'aspartame est rapidement absorbé, (à l'inverse de l'acide aspartique contenu dans les protéines alimentaires), l'aspartame est connu comme pouvant provoquer des pics de concentration d'aspartate dans le plasma sanguin. [10],[11]

Notes

  1. Théorie de l'Excitotoxicité
  2. http://jflecomt.free.fr/these/node29.html
  3. Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 1957 Aug;58(2):193-201. PMID 13443577
  4. Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 1969 May 9;164(880):719-21. PMID 5778021
  5. Temple MD, O'Leary DM, and Faden AI. The role of glutamate receptors in the pathophysiology of traumatic central nervous system injury. Chapter 4 in Head Trauma: Basic, Preclinical, and Clinical Directions. Miller LP and Hayes RL, editors. Co-edited by Newcomb JK. John Wiley and Sons, Inc. New York. pp. 87- 113 (2001).
  6. Stavrovskaya IG and Kristal BS. 2005. The powerhouse takes control of the cell: Is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radical Biology and Medicine. Volume 38, Issue 6, Pages 687-697.
  7. Siegel, G J, Agranoff, BW, Albers RW, Fisher SK, Uhler MD, editors. 1999. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects 6th ed. Philadelphia: Lippincott,Williams & Wilkins.
  8. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 2002 May;5(5):405-14. PMID 11953750
  9. http://webmail.u-picardie.fr/wws/d_read/physiologie/actualites/SFA/33.pdf?checked_cas=1
  10. [1],
  11. Plasma amino acid concentrations in normal adults ...[Metabolism. 1987] - PubMed Result

Références

(via l'article en anglais)

  • Kandel, E.R., Schwartz, J.H., Jessel T.M. Principles of Neural Science, 4th Edition, pp.928, McGraw Hill (2000).
  • Manev H, Favaron M, Guidotti A, Costa E. Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol. 1989 Jul;36(1):106-12. PMID 2568579
  • Smith JD, Terpening CM, Schmidt SO, Gums JG. Relief of fibromyalgia symptoms following discontinuation of dietary excitotoxins. Ann Pharmacother. 2001 Jun;35(6):702-6. PMID 11408989
  • Kim AH, Kerchner GA, and Choi DW. Blocking Excitotoxicity. Chapter 1 in CNS Neuroproteciton. Marcoux FW and Choi DW, editors. Springer, New York. pp. 3 - 36 (2002).

Voir aussi

  • Portail de la médecine Portail de la médecine
  • Portail de la biologie cellulaire et moléculaire Portail de la biologie cellulaire et moléculaire
Ce document provient de « Excitotoxicit%C3%A9 ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Excitotoxicite de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Excitotoxicité — L excitotoxicité est un processus pathologique d altération et de destruction neuronale ou neurotoxicité, par hyperactivation par l acide glutamique et ses analogues, regroupés sous la dénomination d acides aminés excitateurs, des récepteurs… …   Wikipédia en Français

  • 142-47-2 — Glutamate monosodique Glutamate monosodique Général Nom IUPAC (2S) 2 amino 5 hydroxy 5 oxo pentanoate de sodium Synon …   Wikipédia en Français

  • 19982-08-2 — Mémantine Mémantine Général …   Wikipédia en Français

  • 6106-04-3 — Glutamate monosodique Glutamate monosodique Général Nom IUPAC (2S) 2 amino 5 hydroxy 5 oxo pentanoate de sodium Synon …   Wikipédia en Français

  • C5H8NNaO4 — Glutamate monosodique Glutamate monosodique Général Nom IUPAC (2S) 2 amino 5 hydroxy 5 oxo pentanoate de sodium Synon …   Wikipédia en Français

  • E-621 — Glutamate monosodique Glutamate monosodique Général Nom IUPAC (2S) 2 amino 5 hydroxy 5 oxo pentanoate de sodium Synonym …   Wikipédia en Français

  • E621 — Glutamate monosodique Glutamate monosodique Général Nom IUPAC (2S) 2 amino 5 hydroxy 5 oxo pentanoate de sodium Synonym …   Wikipédia en Français

  • E 621 — Glutamate monosodique Glutamate monosodique Général Nom IUPAC (2S) 2 amino 5 hydroxy 5 oxo pentanoate de sodium Synonym …   Wikipédia en Français

  • Glutamate Monosodique — Général Nom IUPAC (2S) 2 amino 5 hydroxy 5 oxo pentanoate de sodium Synonym …   Wikipédia en Français

  • Glutamate de sodium — Glutamate monosodique Glutamate monosodique Général Nom IUPAC (2S) 2 amino 5 hydroxy 5 oxo pentanoate de sodium Synon …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”