Corps parfait

Corps parfait

En mathématiques et plus particulièrement en algèbre dans le contexte de la théorie de Galois, un corps parfait est un corps commutatif dont toutes les extensions algébriques sont séparables.

Les corps parfaits sont utiles pour la théorie de Galois, car les théorèmes fondateurs, comme le théorème de l'élément primitif ou le théorème fondamental de la théorie de Galois utilisent dans les hypothèses le fait que l'extension considérée est séparable.

Les corps parfaits sont relativement fréquents, en effet, tout corps de caractéristique nulle comme ceux des nombres rationnels, des nombres réels ou des nombres complexes sont parfaits. C'est aussi le cas des corps finis.

Sommaire

Définition

  • Un corps est dit parfait si toutes ses extensions algébriques sont séparables.

Soit K un corps et L une extension algébrique de K. Dire que l'extension est séparable signifie que tout polynôme minimal sur K d'un élément de L est séparable, i.e. n'admet aucune racine multiple dans sa clôture algébrique. On peut donc reformuler la définition en :

Exemples

  • Tout corps fini est parfait (cf le paragraphe propriétés).
  • Tout corps de caractéristique nulle est parfait (cf le paragraphe propriétés). Autrement dit : le corps des nombres rationnels et ses extensions (comme le corps des nombres réels ou celui des nombres p-adiques) sont parfaits.
  • Tout corps algébrique sur un corps parfait est lui-même un corps parfait (cf le paragraphe propriétés).
  • En revanche, en caractéristique non nulle p (un nombre premier), tous les corps ne sont pas parfaits. Considérons L=Fp(X) le corps des fractions rationnelles sur le corps fini de cardinal p, K le sous-corps Fp(Xp), et le polynôme irréductible P(Y)=Yp-Xp de K[Y]. Alors l'élément X de L est racine multiple (d'ordre p) de P(Y), qui n'est donc pas séparable.

Propriétés

Critère de séparabilité

Article détaillé : extension séparable.

L'analyse des extensions séparables permet d'établir des critères de séparabilité d'un polynôme ou d'une extension.

  1. Un polynôme est séparable si et seulement si lui et sa dérivée formelle sont premiers entre eux.
  2. Un polynôme irréductible est séparable si et seulement si sa dérivée formelle n'est pas nulle.
  3. Supposons K de caractéristique p et P(X) un polynôme irréductible. Il est séparable si et seulement s'il n'existe pas de polynôme Q(X) dans K[X] tel que l'on ait l'égalité P(X)=Q(Xp).
  4. Soient L une extension algébrique de K et M une extension algébrique de L. Alors M est séparable sur K si et seulement si M est séparable sur L et L est séparable sur K.
  5. Tout corps algébrique sur un corps parfait est lui-même un corps parfait.

Les propriétés 1 à 4 sont démontrées dans l'article détaillé et la 5 se déduit immédiatement de la 4.

Caractérisation des corps parfaits

Théorème —  Un corps K est parfait si et seulement s'il est de caractéristique nulle ou, lorsqu'il est de caractéristique p > 0, l'endomorphisme de Frobenius x\mapsto x^p est surjectif (autrement dit tout élément de K possède une racine p-ième dans K). En particulier tout corps fini est parfait.

Voir aussi

Liens externes

Références

  • Adrien Douady et Régine Douady, Algèbre et théories galoisiennes [détail des éditions]
  • Serge Lang, Algèbre [détail des éditions]
  • Pierre Samuel, Théorie algébrique des nombres [détail des éditions]

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Corps parfait de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Corps Parfait — En mathématiques et plus particulièrement en algèbre dans le contexte de la théorie de Galois, un corps parfait est un corps dont toutes les extensions algébriques sont séparables. Les corps parfaits sont utiles pour la théorie de Galois, car les …   Wikipédia en Français

  • Corps Fini — Joseph Wedderburn démontre la dernière conjecture sur les corps finis en 1905 En mathématiques et plus précisément en algèbre, un corps fini est un corps (commutatif) dont le cardinal est fini. À isomorphisme près, un corps fini est entièrement… …   Wikipédia en Français

  • Corps de Galois — Corps fini Joseph Wedderburn démontre la dernière conjecture sur les corps finis en 1905 En mathématiques et plus précisément en algèbre, un corps fini est un corps (commutatif) dont le cardinal est fini. À isomorphisme près, un corps fini est… …   Wikipédia en Français

  • parfait — parfait, aite [ parfɛ, ɛt ] adj. et n. • XIIe; parfit XIe; perfectus Xe; p. p. du v. parfaire, d apr. lat. perfectus I ♦ Qui est au plus haut, dans l échelle des valeurs. 1 ♦ Tel qu on ne puisse rien concevoir de meilleur. ⇒ …   Encyclopédie Universelle

  • CORPS (mathématiques) — La structure de corps n’est en fait qu’un cas particulier de la structure plus générale d’anneau [cf. ANNEAUX ET ALGÈBRES]; en plus des axiomes généraux, on stipule que le groupe multiplicatif des éléments inversibles est le complémentaire de 0.… …   Encyclopédie Universelle

  • Corps (Mathématiques) — Pour les articles homonymes, voir Corps. En mathématiques, et plus précisément en algèbre, un corps est une structure algébrique. De manière informelle, un corps est un ensemble dans lequel il est possible d effectuer des additions, des… …   Wikipédia en Français

  • Corps (mathématique) — Corps (mathématiques) Pour les articles homonymes, voir Corps. En mathématiques, et plus précisément en algèbre, un corps est une structure algébrique. De manière informelle, un corps est un ensemble dans lequel il est possible d effectuer des… …   Wikipédia en Français

  • Corps De Rupture — En mathématiques et plus précisément en algèbre dans le cadre de la théorie de Galois un corps de rupture d un polynôme à coefficients dans un corps K est une extension algébrique de K contenant au moins une racine du polynôme. Les corps de… …   Wikipédia en Français

  • Corps De Décomposition — En mathématiques et plus précisément en algèbre dans la théorie de Galois, le corps de décomposition d un polynôme formel P(X) est la plus petite extension de corps contenant toutes les racines de P(X). On montre qu une telle extension existe… …   Wikipédia en Français

  • Corps de decomposition — Corps de décomposition En mathématiques et plus précisément en algèbre dans la théorie de Galois, le corps de décomposition d un polynôme formel P(X) est la plus petite extension de corps contenant toutes les racines de P(X). On montre qu une… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”