Phaeocystis

Phaeocystis
Aide à la lecture d'une taxobox Phaeocystis
 Phaeocystis
Phaeocystis
Classification
Domaine Eukaryota
Division Haptophyta
Classe Prymnesiophyceae
Ordre Phaeocystales
Famille Phaeocystaceae
Genre
Phaeocystis
Lagerheim, 1893
Espèces de rang inférieur

Phaeocystis est un genre d'algues nanoplanctoniques marines (prymnésiophycée).

Ces algues quand elles passent d'un mode de vie solitaire à une vie coloniale peuvent être à l'origine de blooms planctoniques très importants qui se manifestent notamment en mer en mer du Nord[1] Manche/mer du Nord, et particulièrement dans le pas de Calais et en Belgique[2] et aux pays-Bas [3],[4], mais également périodiquement jusqu'en zone paléarctique.

Ces blooms se traduisent par l'apparition d'un épais mucilage[5] dans l'eau [6] qui peut gêner la pêche et qui sur les plages et les laisses de mer forme parfois une épaisse couche d'écume (de couleur blanc-gris à brunâtre ou blanc jaunâtre, de quelques millimètres à quelques dizaines de cm, voire à un mètre de hauteur).

Selon l'étude faite par IFREMER en 2004, bien que les pêcheurs s'y soient habitués et le considèrent comme d'origine naturelle, il s'agit d'un phénomène plus important qu'autrefois, mais qui a déjà été observé en Angleterre en 1923 sur l'estuaire de la Tamise. Il ne semble pas y avoir eu d'observations antérieure relatée par les naturalistes ou chroniqueurs des époques précédentes.
Les pêcheurs de la Manche occidentale française nomment ces blooms « vert de mai », « crasse » (synonyme d'écume), ou parlent du « gluant », ou du « limon ».
Côté anglais les pêcheurs parlent de tobacco juice ou de baccy juice ou de fisherman's signs ou encore de foul water ou de stinking water.

Sommaire

Description

Ce genre regroupe des espèces d'abord décrite par le biologiste Kornmann en 1955, caractérisées par un cycle de vie polymorphique et complexe.
Elle est observée dans le milieu naturel sous diverses formes[7] dont :

  • cellules solitaires en suspension dans l'eau. Dans ce cas les cellules mesurent de 3 et 8 micromètres et on en trouve de deux formes : flagellées et mobiles ou non-flagellées et se laissant porter par le courant.
    Cette forme semble plus fréquente dans les zones marines oligotrophes (Atlantique, Pacifique et Méditerranée)
  • colonies de cellules non flagellées à l'aspect gélatineuses car protégées par un mucus. Chaque élément colonial mesure de quelques micromètres à quelques millimètres.
    Cette forme semble caractéristique des zones eutrophes et rare dans les zones où la colonne d’eau est stratifiée en permanence[8]. In vitro, la forme coloniale s'avère aussi la plus compétitive dans les eaux riches en nutriments (eutrophes)[9].

[[Schaum von Phaeocystis globosa.JPG|left|thumb|Écume formée par Phaeocystis globosa]] Le public connaît surtout ces espèces par l'écume de couleur blanc-crème couvrant l'eau ou déposée sur les plages et rochers du littoral par la marée) descendante. Cette écume qui peut devenir nauséabonde quand elle est épaisse est formée à partir du mucus algal lors des blooms planctoniques qui sont modifiés par une mer très agitée. Ces blooms sont de plus en plus communs de mars à juin sur les littoraux eutrophisés (notamment en Manche-Est/mer du Nord). Dans ces cas, l'espèce en cause est généralement Phaeocystis pouchetii. l'épaisseur de cette écume a pu atteindre voire dépasser 2 mètres là où le vent et le courant l'accumule.

Écologie et physiologie

C'est le seul phytoplancton marin connu pour être capable de brutalement devenir l'espèce dominante de tout un écosystème[10],[11].

Ces algues sont bien connues pour leur efflorescence algale spectaculaire (dit aussi le "bloom") à la surface de la mer au printemps, favorisée par un excès de nitrate et/ou phosphates dans l'eau[12].

Elle peut être responsable de changements brutaux et importants dans la structure[13] et le fonctionnement des réseaux trophiques (planctonique et benthique), avec des conséquences en termes de biogéochimie[14].
En Manche orientale, où cette espèce a des caractéristiques invasives, elle est – par ses pullulations printanières – susceptible de poser des problèmes écologiques mais aussi économiques (pour la pêche et la conchyliculture), ce qui a justifié le déclenchement par l'IFREMER et l'ULCO d'une étude spécifique de 2002à 2006, dans le cadre du PNEC (Programme national d’environnement côtier) intitulé « Déterminisme du bloom de Phaeocystis et ses conséquences sur l’écosystème Manche orientale-Sud Mer du Nord », de la frontière franco-belge au littoral du Pays de Caux.

Répartition

Phaeocystis est un genre eurytherme et ubiquiste qui a colonisé une grande partie de la planète[15]. Diverses espèces de ce genre sont fréquemment observées (avec des blooms printaniers) sur les côtes de la mer du Nord[16] (Belgique[17], Pays-Bas[18],[19], Allemagne[20]).
Divers auteurs[21] en on trouvé jusqu'aux mers polaires, en Arctique (mer de Barents, mer du Groenland, mer de Béring) comme au sud dans l'Antarctique(mer de Ross, mer de Weddell). On l'a également trouvé en plein Atlantique et dans Pacifique, et sur les côtes de Floride et d'Australie, comme dans le golfe Arabo-Persique.

Ce sont des espèces qui sont aussi susceptibles d'être transportées à grande distance dans les ballasts de navires marchands.

En zone froide ; les espèces dominantes sont :

En zone tempérée, les espèces dominantes seraient[22] :

  • Phaeocystis globosa en Atlantique Nord-Est (mer du Nord) ;
  • Phaeocystis pouchetii en Atlantique Nord-Ouest.

Pullulations (blooms)

Des abondances importantes peuvent être mesurées lors des blooms (plus de 1 000 cellules/litre d'eau de mer, avec record avec plus de 37 106 cellules/litre en baie de Somme début avril, sur le littoral picard et du Nord-Pas-de-Calais [23]. Ifremer [24] a par exemple détecté des Phaeocystis abondants sur le littoral boulonnais et picard en mars et mai 2003, et du mois de mars à celui de juin 2003 dans le Dunkerquois.

Les causes des pullulations

Elles semblent multiples, mais surtout dépendre de la quantité et proportion de nutriments : Lancelot et ses collègues – en 1987 – puis Riegman et son équipe[25] ont estimé que l'eutrophisation des littoraux (par apports de nitrates et phosphates terrigène, via rivières, fleuves et précipitations) étaient la cause probable de blooms de Phaeocystis . Cinq ans plus tard, Riegman et al. – en 1992 – précisaient le mécanisme : ce sont des changements de proportions entre nutriments, et non seulement leur excès qui favoriserait ces blooms. Des conditions de température, salinité, et selon Peperzak en 1993 un apports important d’eau douce (pluies de printemps, fonte de neige) seraient également déterminantes pour qu'un bloom apparaissent, mais ce ne sont pas les facteurs principaux selon Lancelot et Verity, Lancelot estimant (1987, 1995) que certaines conditions météorologique (vents/marées) favoriseraient l'agrégation de colonies enrobées de mucus. Ce mucus pouvant jouer le rôle de réservoir[26] énergétique et de phosphore la nuit (quand la photosynthèse ne peut être activée et le jour si le phosphore dissous dans l'eau est épuisé).

Fin des pullulations

Le bloom prend généralement fin aussi « brutalement » qu'il est apparu. Ce mécanisme semble avoir plusieurs explications :

  • les conditions nécessaire à la vie coloniale ont disparu (et/ou une ressource alimentaire a été épuisée) ;
  • les colonies sont consommées et/ou concurrencées par des microorganismes auto- et hétérotrophes (virus, mésozooplancton, diatomées, ciliées, dinoflagellés, nanoflagellés hétérotrophes et microbes divers qui ont eu le temps de se développer aux dépens du bloom)[27],[28] ;
  • une partie des organismes poussée par le vent s'est échoué à chaque marée ;
  • l'expansion des colonies est freinée par l'accumulation de débris inorganiques qui dégradent leur structure mucilagineuse[29].
  • l'agitation de l'eau a diminué et/ou la colonisation du mucus et des Phaeocystis par des microbes augmente le poids de certains éléments de la colonie, les entraînant vers le fond (sédimentation)[30].
  • cause « interne », liée à une déstructuration chimique du mucus par les microbes qui s'y développent et/ou par des déchets du métabolisme et catabolisme de la colonie hors période de photosynthèse[31].

Impacts des pullulations

Impacts sur les activités humaines

Les fortes pullulations gênent la pêche, surtout au filet fixe. Le fileyage est plus gêné que le chalutage, notamment à cause du colmatage des filets fixes et des filets à mailles fines (pour la pêche à la crevette en particulier) ; les filets sont colmatés ou alourdis par les mucilages algaux. Les crépines de prise d'eau de refroidissement des moteurs tendent à se boucher. Les pêcheurs signalent que le phénomène est de plus en plus précoce et long, et que le poisson pêché dans ces filets est anormalement gluant et malodorant et doit être lavé et relavé par les pêcheurs[32] , etc.

Toxicologie, écotoxicologie

La question des impacts toxicologiques ou écotoxicologiques de ces blooms reste discutées et sont étudiées, dont en France dans le cadre du PNEC (programme national environnement côtier).

IFREMER cite dans son rapport[33]

  • des observations de poissons (harengs ou maquereaux par exemple) évitant les zones de blooms sont citées par Ifremer ;
  • des effets nuisibles sont observés sur la conchyliculture[34]  ;
  • un cas documenté de mortalité de poissons associé à Phaeocystis (nombreux saumons d'élevage perdus en en 1992 en Norvège à l'occasion d'un bloom de Phaeocystis.
  • un lien possible ou probable avec les problèmes d'eutrophisation littorale[35]
  • Des sédimentations importantes ont été observée sans pullulation majeure. Des études dans un fjord norvégien et au nord de la mer de Weddell n'ont pas observées de sédimentation significative, alors que des sédimentations massives ont été observées en mer de Barents et en mer de Ross, avec des conséquences locales et globales encore mal comprises et difficiles à prévoir. De nombreux facteurs biotiques et abiotiques semblent se conjuguer pour les expliquer (profondeur, température, salinité et composition de l'eau, nature et force des turbulences et courants, formation d'agrégats, attaques et dégradation microbienne de la nécromasse, broutage par le zooplancton, lyse des cellules des colonies...). De manière générale, selon les données disponibles, dans les écosystèmes dominés ou affectés par des Phaeocystis, en fin de bloom, la minéralisation de la nécromasse est plus souvent pélagiques que benthique. Le devenir de la sédimentation des cellules mortes ou des excrétions des cellules vivantes fait l'objet d'études [36].

Rétroactions climatiques

Les colonies à l'origine de blooms produisent de grandes quantités de gaz libérés dans l'eau et l'air, dont le diméthylsulfide (DMS) qui est un acidifiant et pourrait jouer un rôle climatique (nucléation de l'eau de pluie, augmentation de la nébulosité et donc de l'albédo nuageuse)[37]. En augmentant les pluies, ce type de phénomène peut se traduire par une augmentation du lessivage des terres et donc d'une augmentation de l'eutrophisation des eaux littorales.

Voir aussi

Articles connexes

Liens externes

  • Rapport Ifremer (« Le bloom de Phaeocystis en Manche orientale, Nuisances socio-économiques et/ou écologiques ? » Lefebvre Alain, Delpech Jean-Paul, septembre 2004 Ref : R.INT.DEL/BL/RST/04/11)

Bibliographie

  • (en) Lancelot C., Keller M.D., Rousseau V., Smith W.O. & S. Mathot, 1998. Autecology of the marine haptophyte Phaeocystis sp.. NATO AS1 Series, vol. G41, Physiological Ecology of Harmful Algal Blooms, Anderson D.M. & G.M. Hallegraeff eds., Springer-Verlag Berlin Heidelberg.
  • (en) Rousseau V., Vaulot D., Casotti R., Cariou V., Lenz J., Gunkel J. & M.E.M. Baumann, 1994. The life cycle of Phaeocystis (Prymnesiophyceae): Evidence and hypotheses. J. Mar. Syst., 5 (1): 23-39.
  • (en) Schapira, M., Seuront, L., Gentilhomme, V. : Effects of small-scale turbulence on Phaeocystis globosa (Prymnesiophyceae) growth and life cycle. J. Exp. Mar. Biol. Ecol., 335, 27-38, 2006.
  • (en) Boulart, C., Flament, P., Gentilhomme, V., Deboudt, K., Migon, C., Lizon, F., Schapira, M., Lefebvre, A. : Atmospherically-promoted photosynthetic activity in a well-mixed ecosystem : Significance of wet deposition events of nitrogen compounds. Est. Coast. Shelf Sci., 69, 449-458, 2006.
  • (en) Schapira, M., Vincent, D., Gentilhomme, V., Seuront, L. : Temporal patterns of phytoplankton assemblages, size spectra and diversity during the wane of a Phaeocystis globosa spring bloom in hydrologically contrasted coastal waters, J. Mar. Biol. Ass. UK, sous presse.
  • (en)Verity P.G., Villareal T.A. & T.J. Smayda, 1988. Ecological investigations of blooms of colonial Phaeocystis pouchetti - 1. Abundance, biochemical composition, and metabolic rates. J. Plankton Res., 10 (2): 219-248.

Notes et références

  1. Lancelot C., Billen G., Sournia A., Weisse T., Colijin F., Veldhuis M.J.W., Davies A. & P. Wassman, 1987. Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. AMBIO., 16 (1): 38-46.
  2. Lancelot C. & S. Mathot, 1987. Dynamics of a Phaeocystis -dominated spring bloom in Belgian coastal waters. 1. Phytoplankton activities and related parameters. Mar. Ecol. Prog. Ser., 37 (2-3): 239-248.
  3. Veldhuis M.J.W., Colijn F. & L.A.H. Venekamp, 1986. The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth. J. Sea Res., 20 (1): 37-48.
  4. Cadée G.C. & Hegeman J., 1986. Seasonal and annual variation in Phaeocystis pouchetii (Haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Neth. J. Sea Res., 20 (1): 29- 36.
  5. Lancelot C., 1995. The mucilage phenomenon in the continental coastal waters of the North Sea. The Science of the Total Environment, 165: 83- 102.
  6. Veldhuis M.J.W. & Admiraal W., 1985. Transfer of photosynthetic products in gelatinous colonies of Phaeocystis pouchetii (Haptophyceae) and its effects on the mesurement of excretion rate. Mar. Ecol. Prog. Ser., 26: 301-304.
  7. Lancelot C. &V. Rousseau, 1994. Ecology of Phaeocystis : the key role of colony forms The Haptophyte Algae. Green J.C. & B.S.C. Leadbeater eds., Clarendon Press, Oxford. The Systematics Association, Special volume N°. 51, pp. 229-245.
  8. Bätje & Michaelis, 1986 ; Weisse et al., 1986 ; Lancelot et al.,1987) cités par le rapport d'IFREMER cité dans les liens externes
  9. Riegman et al., 1992
  10. Source : Alain Lefebvre / Ifremer Manche - Mer du Nord Laboratoire Environnement et Ressources (consulté 15 juin 2008), citant Lancelot C., Wassmann P. & H. Barth, 1994. Ecology of Phaeocystis dominated ecosystems. J. Mar. Syst., 5 (1): 1-4.
  11. Lancelot C., Wassmann P. & H. Barth, 1994. Ecology of Phaeocystisdominated ecosystems. J. Mar. Syst., 5 (1): 1-4.
  12. Verity P.G., Villareal T.A. & T.J. Smayda, 1988. Ecological investigations of blooms of colonial Phaeocystis pouchetti - 1. Abundance, biochemical composition, and metabolic rates. J. Plankton Res., 10 (2): 219-248.
  13. Lancelot C. &V. Rousseau, 1994. Ecology of Phaeocystis : the key role of colony forms The Haptophyte Algae. Green J.C. & B.S.C. Leadbeater eds., Clarendon Press, Oxford. The Systematics Association, Special volume N°. 51, pp. 229-245.
  14. Weisse T., Tande K., Verity P., Hansen F. & W. Gieskes, 1994. The trophic significance of Phaeocystis blooms. J. Mar. Syst., 5(1): 67-79.
  15. Kaskin, 1963
  16. Lancelot C., Billen G., Sournia A., Weisse T., Colijin F., Veldhuis M.J.W., Davies A. & P. Wassman, 1987. Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. AMBIO., 16 (1): 38-46.
  17. Lancelot C. & S. Mathot, 1987. Dynamics of a Phaeocystis –dominated spring bloom in Belgian coastal waters. 1. Phytoplankton activities and related parameters. Mar. Ecol. Prog. Ser., 37 (2-3): 239-248.
  18. Cadée G.C. & Hegeman J., 1986. Seasonal and annual variation in Phaeocystis pouchetii (Haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Neth. J. Sea Res., 20 (1): 29-36.
  19. Veldhuis M.J.W., Colijn F. & L.A.H. Venekamp, 1986. The spring bloom of Phaeocystis pouchetii (Haptophyceae) in Dutch coastal waters. Neth. J. Sea Res., 20 (1): 37-48.
  20. Bätje M. & Michaelis H., 1986.Phaeocystis pouchetii blooms in the East Frisian coastal waters (German Bight, North Sea). Mar. Biol., 93 (1): 21-27.
  21. Cadée & Hegeman, 1974 ; Lancelot & Mathot, 1987 ; Lancelot et al., 1987, 1998 ; Veldhuis et al., 1986 ; Weisse al., 1986
  22. Lancelot et al., 1998
  23. Lefebvre & Libert, 2004
  24. Lefebvre A. & Libert A., 2004. Suivi régional des nutriments sur le littoral du Nord-Pas-de-Calais Picardie. Bilan de l’année 2003. Rapport DEL/BL/RST/04/04, 92 pages, réseau REPHY (Réseaux Phytoplancton & Phycotoxines d'IFREMER
  25. Riegman R., Noordeloos A.M. & Cadee,-G.C., 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar. Biol., 112 (3): 479-484.
  26. Veldhuis M.J.W. & Admiraal W., 1985. Transfer of photosynthetic products in gelatinous colonies of Phaeocystis pouchetii (Haptophyceae) and its effects on the mesurement of excretion rate. Mar. Ecol. Prog. Ser., 26: 301-304.
  27. Billen, 1994 – Wassmann, 1994 – Weisse et al, 1994 – Lancelot, 1995
  28. Thingstad F. & G. Billen, 1994. Microbial degradation of Phaeocystis material in the water column. J. Mar. Syst., 5(1): 55-65.
  29. Rousseau et al, 1994
  30. Wassmann P., 1994. Significance of sedimentation for the termination of Phaeocystis blooms. J. Mar. Syst., 5(1): 81-100. Voir aussi Rousseau et al., 1994, Lancelot, 1995
  31. Veldhuis & Admiraal, 1985 – Lancelot & Rousseau, 1994
  32. rapport Ifremer page 21/39
  33. Présentation (programme national environnement côtier) et rapport : Le bloom de Phaeocystis en Manche orientale Nuisances socio-économiques et / ou écologiques ?, Ifremer ; sept. 2004 ; (PDF, 39 pages, consulté 2010/07/04
  34. Ropert M. & Olivesi R., 2002. État de l'activité mytilicole sur le secteur de Quend Plage (Picardie). Première approche des problèmes de mortalités printanières de moules associées au développement saisonnier de « vase » sur les bouchots. Rapport DEL/BL/RST/02/03, 20 pages.
  35. Riegman R., Noordeloos A.M. & Cadee,-G.C., 1992. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea. Mar. Biol., 112 (3): 479-484.
  36. Wassmann P., 1994. Significance of sedimentation for the termination of Phaeocystis blooms. J. Mar. Syst., 5(1): 81-100
  37. Lancelot et al., 1994

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Phaeocystis de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Phaeocystis — Phaeocystis …   Wikipédia en Français

  • Phaeocystis pouchetii — Phaeocystis …   Wikipédia en Français

  • Phaeocystis pouchetii — Phaeocystis Phaeocystis …   Wikipédia en Français

  • List of eukaryotic picoplankton species — List of eukaryotic species that belong to picoplankton, i.e. which have one of their cell dimensions smaller than 3 µm. = Autotrophic species = Chlorophyta Chlorophyceae * Stichococcus cylindricus (Butcher), 3 4.5 µm, brackish Pedinophyceae *… …   Wikipedia

  • Mer du Nord — Carte de la mer du Nord. Géographie humaine Pays côtier(s) …   Wikipédia en Français

  • Prymnesiophyceae — Prymnésiophycées …   Wikipédia en Français

  • Prymnésiophycée — Prymnesiophyceae Prymnésiophycées …   Wikipédia en Français

  • Fleuve marin côtier — Pour les articles homonymes, voir Manche. Fleuve marin côtier Carte de la Manche. Géographie humaine …   Wikipédia en Français

  • Prymnesiophyceae — Prymnésiophycées …   Wikipédia en Français

  • Haptophyte — Taxobox name = Haptophytes image width = 250px image caption = Coccolithophore ( Emiliania huxleyi ) domain = Eukaryota regnum = Chromalveolata phylum = Haptophyta phylum authority = Hibberd 1976 subdivision ranks = Orders subdivision =Class… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”