Plancton

Plancton
Les diatomées sont une des bases des réseaux trophiques océaniques et d'eau douce. Certaines sont considérées comme bioindicatrices de la qualité de l'eau.
Beroidae, élément du zooplancton.

Homère désignait les animaux errant à la surface des flots par plankton, du grec ancien πλανκτός / planktós ou « errant ». Selon Hensen (1887), le plancton est l'ensemble des petits organismes vivant dans les eaux douces, saumâtres et salées, le plus souvent en suspension et apparemment passivement : gamètes, larves, animaux inaptes à lutter contre le courant (petits crustacés planctoniques et méduses), végétaux et algues microscopiques. Les organismes planctoniques sont donc définis à partir de leur niche écologique et non selon des critères phylogénétiques ou taxonomiques.

Le plancton est à la base de nombreux réseaux trophiques. Le phytoplancton constitue à lui seul environ 50 % de la matière organique produite sur la planète Terre[1], mais il semble en diminution régulière depuis une vingtaine d'années.
Il constitue la principale nourriture des baleines à fanon, des coquillages filtreurs (dont moules, coques, huîtres, etc.), qu'il peut parfois intoxiquer par diverses toxines.
Le zooplancton contribue par ses mouvements verticaux (cycles liés à la lumière et aux saisons) au mélange des couches d'eau. C'est un aspect de la bioturbation qui pourrait avoir été sous-estimé[2],[3]. De tels phénomènes existent également en eau douce (avec le mouvement des populations de daphnies par exemple).

Sommaire

Définitions scientifiques contemporaines

La définition d'Hensen est perçue comme incomplète car elle n'inclut pas certains êtres. Des scientifiques ont proposé différents termes pour désigner une certaine partie des organismes vivant en milieu aquatique :

  • le necton, capable de se déplacer activement horizontalement et/ou verticalement éventuellement contre le courant : poissons, cétacés, etc.
    L'ensemble constitué du plancton et du necton constitue le pélagos.
    Le caractère passif du déplacement est réputé être le seul critère valable pour caractériser l'appartenance au plancton, mais de nombreuses espèces planctoniques sont capables de se déplacer (flagelles, modifications de la densité des cellules...)
  • le tripton, appelé pseudoplancton par Davis (1955)[4], qui rassemble les éléments supposés morts (nécromasse) ou d'origine minérale ou organique (excrétats, particules issues du plancton mort...).
  • Le seston, qui regroupe l'ensemble des particules, de toute nature, mortes ou vives, organiques ou inorganiques en suspension dans l'eau (seston = tripton + plancton). Le seston est notamment formé des excrétats du plancton et des autres organismes, dont leurs excréments.

Types de plancton

Pterotracheidae (Zooplancton)
Larve planctonique de poisson d'eau froide (Zooplancton)
Animalcule planctonique contribuant aux micro-mélanges (bioturbation) de l'eau[3],[2]
  • Le plancton végétal, ou phytoplancton (du grec φυτόν / phutón ou « plante »), est le point de départ de toute l'activité biologique de la mer, à la base de toutes les chaînes alimentaires aquatiques. Il utilise l'énergie solaire pour fabriquer de la matière organique. Hormis pour le nanoplancton et le picoplancton, il est essentiellement présent dans les couches superficielles de la mer (de 0 à 15 mètres de profondeur). Il détermine sa position, en surface ou entre deux eaux, en fonction de la quantité de lumière qu'il peut capter, indispensable à sa photosynthèse. Il est constitué d'algues microscopiques, formées d'une seule cellule ou de cellules réunies en chaînes, se multipliant par division cellulaire grâce à la lumière, au CO2 et aux sels nutritifs. Elles produisent de grandes quantités d'oxygène nécessaire à la vie dans l'eau, mais aussi, par les échanges gazeux, participent à l'oxygénation de la planète. Pour se multiplier, le phytoplancton a besoin non seulement de soleil et de gaz carbonique, mais aussi d'une alchimie d'éléments minéraux et d'oligoéléments variés et complexes, en particulier le phosphore et l'azote. Ces éléments proviennent de la décomposition, par les bactéries, des déchets organiques[5]. Au sein du phytoplancton, les deux groupes les plus nombreux et les plus représentés en termes d'espèces sont les diatomées et les dinoflagellés[6].
  • Le plancton animal, ou zooplancton (du grec ζῷον / zõio ou « animal »), est composé de deux groupes : l'holoplancton et le méroplancton.

D'après le cycle biologique des organismes, l'holoplancton (ou plancton permanent) se reproduit par accouplement et se multiplie. Le méroplancton ou (plancton temporaire) concerne de très nombreuses espèces marines telles que les homards, les crevettes les huîtres, les moules qui, à un moment donnée de leur existence, passent par des stades larvaires très complexes. Les crustacés copépodes composent plus de 80% du zooplancton. Il remonte la nuit vers la surface pour se nourrir de phytoplancton et redescend pendant la journée vers les eaux plus profondes. Il échappe ainsi aux prédateurs et économise de l’énergie car la température est moins élevée. Ce mouvement du zooplancton, qui contribue au brassage des eaux et des couches de températures variées ou diversement oxygénées est appelé migration verticale quotidienne ou nycthémérale — un nycthémère, du grec νυκτ- / nukt-, nuit, et ἡμέρα / hêméra, jour, désigne une durée de 24 heures. Certains prédateurs du plancton suivent ces mouvements. Sur certains littoraux, et berges urbanisées, il est possible que certaines espèces de zooplancton puissent être affectées par la pollution lumineuse.

  • Le nanoplancton (20-2 µm) et le picoplancton (2-0,2 µm), et femtoplancton, ou le virioplancton (virus marins essentiellement) découverts plus récemment, constituent une part encore mal connue de la biodiversité marine. Ces catégories de taille incluent de nombreuses espèces qui semblent pouvoir vivre à grande profondeur où l'intensité lumineuse est extrêmement faible. Certaines de ces espèces semblent avoir des rythmes de reproduction très lents ainsi qu'une durée de vie exceptionnellement longue (caractéristique qu'on retrouve aussi chez des organismes plus complexes des grandes profondeurs, dont certains poissons des grands fonds).

Le plancton désignant l'ensemble d'organismes différents, il est incorrect de dire « un plancton » : on devrait préciser de quel organisme (taxon) on parle.

Les tailles du plancton

Le plancton est souvent classé selon sa taille, liée au type de filtre utilisé pour le recueillir :

  • mégaplancton : 20-200 cm (ex : grosses méduses, colonies de salpes)
  • macroplancton : 2-20 cm
  • mesoplancton : 0,2 mm-2 cm (visible à l'œil nu)
  • microplancton : 20-200 μm (filtre en toile)
  • nanoplancton : 2-20 μm (filtre à café)
  • picoplancton : 0,2-2 μm (bactéries et eucaryotes)
  • femtoplancton : <0,2 μm (essentiellement des virus)

Le nanoplancton et les planctons de tailles inférieures ont seulement été découverts dans les années 1980. Le plus gros organisme planctonique est la méduse Chrysaora. Elle mesure 1 m de diamètre et 6 m de long. Le plancton de grande taille ne renferme que des espèces animales (zooplancton), alors que les espèces végétales (phytoplancton) dominent les plus petites classes de taille[7].

Adaptations du plancton à la vie pélagique

Malgré la très grande diversité du plancton, certains caractères généraux donnent une physionomie particulière aux organismes planctoniques qui est liée à leur mode de vie en pleine eau. En effet, ce mode de vie requière des adaptations qui permettent aux organismes 1) d'éviter d'être vus par les prédateurs puisqu'ils sont incapables de se déplacer volontairement sur de grandes distances: ils constituent des proies faciles et 2) de se maintenir dans la colonne d'eau et éviter de couler[8].

  • Coloration: Les organismes planctoniques sont en général peu pigmentés et tendent même à la transparence. Chez les organismes pigmentés, la pigmentation se limite à des organes précis et de petite taille (ex: les plastes ou les organes de la vision).
  • Flottabilité: Les organismes planctoniques doivent se maintenir entre deux eaux et éviter de couler de la façon la plus économique en énergie que possible. Ils ont pour cela développer plusieurs stratégies qui leur permettent soit de réduire leur poids soit d'augmenter leur surface de flottaison.
  1. Ils sont riches en eaux avec un corps qui peut être constitué de substances gélatineuses. Certains individus appartenant au mégaplancton peuvent avoir une teneur en eau supérieure à 95%. A titre de comparaison, le corps humain en contient 56%.
  2. Ils possèdent très peu de formations squelettiques et les organismes qui en possèdent ont un squelette moins lourd et résistant que les organismes benthiques (qui vivent sur ou à proximité du fond. Voir benthos). Les diatomées ont par exemple des frustules plus minces et la chitine qui est la matière qui constitue la carapace des crustacés est plus fine et contient moins de calcaire.
  3. Certains organismes possèdent des vacuoles ou des flotteurs remplis de lipides ou de gaz avec une densité plus faible que l’eau.
  4. D’autres ont même modifié la composition ionique de leurs cellules : les ions légers tels que le chlore (Cl) ou le potassium (K) remplacent les sulfates (SO4) et le magnésium (Mg) de poids moléculaire plus important.
  5. Ils possèdent des organes qui augmentent leur surface. Par exemple, certaines diatomées possèdent des filaments. D'autres organismes se regroupent en colonies (ex : les salpes qui constituent des chaînes pouvant atteindre plus de 10 m de long).

Ces adaptations n’étant parfois pas suffisantes pour éviter de couler, certains organismes les ont complétées par une activité motrice réduite par le biais de cils, flagelles ou de contractions du corps.

Productivité

La productivité primaire, réalisée par le phytoplancton (algues planctoniques), dépend de la disponibilité en nutriments (azote, phosphore et selon les espèces de phytoplancton silicium), de la température et de la lumière dans l'eau. La productivité secondaire est liée à la biomasse du zooplancton (plancton animal) et à son efficacité de croissance.

La productivité, liée à la biomasse, est plus élevée dans l’eau froide, généralement plus dense et riche en nutriments. Elle est aussi souvent plus forte en milieu côtier soumis aux enrichissement en nutriments des fleuves.

Malgré une augmentation de productivité dans le nord, autour des pôles, et malgré quelques blooms spectaculaires locaux, l’activité planctonique semble en diminution à échelle planétaire de 1999 à 2006.
Le plancton est à la base de nombreux réseaux trophiques.

Plancton et chaîne alimentaire

Le plancton est le premier maillon des chaînes alimentaires marines. Le phytoplancton est mangé par le zooplancton et par une multitude d’organismes marins. Ils seront la proie de petits prédateurs eux-mêmes chassés par de grands prédateurs. Certains gros animaux comme la baleine et le requin pèlerin se nourrissent directement de zooplancton. Dans les eaux douces et plus encore dans les eaux saumâtres, le phytoplancton est une des bases principales des chaînes alimentaires.

Dans les eaux particulièrement turbides, chargées de particules sableuses ou de vases en suspension, des types particuliers de plancton apparaissent, qui colonisent les particules en suspension, permettant une biomasse élevée malgré le fait que la turbidité ne permette pas la pénétration du soleil. Ces eaux sont généralement soumises à une agitation et ou à des courants importants qui les oxygènent.
Un cas particulier est celui du bouchon vaseux des estuaires, qui se meut au rythme des marées et des afflux d'eaux douces. Il sert de nurserie ou de protection et de zone de nourrissage aux alevins de certaines espèces. Il peut aussi concentrer certaines pollutions. La "pluie" ou "neige" que constituent les cadavres ou excréments de zooplanctons qui descendent passivement vers les fonds marins a une grande importance pour l'alimentation des espèces de grands fonds et pour les cycles biogéochimiques.

Certaines espèces planctoniques peuvent produire des toxines puissantes (dont botuliques), lesquelles peuvent être concentrées dans la chaîne alimentaire par les coquillages, organismes filtreurs ou certains poissons. Ces mêmes organismes peuvent aussi et en sus concentrer des toxiques modifiés et/ou bioaccumulés par le plancton tel le mercure méthylé, dont la quantité tend à augmenter régulièrement chez les poissons prédateurs et cétacés, de manière très préoccupante pour la santé des consommateurs humains et des écosystèmes marins.

Dans certaines conditions (apports élevés de nutriments, généralement des matières organiques, nitrates ou phosphates), un "excès" de plancton conduit à une situation d'eutrophisation, voire de dystrophisation, c'est-à-dire de mort ponctuelle ou durable de la plupart des organismes aquatiques. L'ONU a identifié une centaine de zones mortes (Dead zone) dont en mer Baltique. Dans ces zones, l'eutrophisation peut être combinée à d'autres types de pollution ou de perturbation.

Plancton et nécromasse

Floraison planctonique (bloom) en aval d'un estuaire au large de l'Argentine, signe d'une productivité biologique intense, mais qui peut conduire à une zone d'anoxie la nuit, ou à une production de toxines (détecté par le satellite Aqua de la NASA à l'aide du spectroradiomètre MODIS (Moderate Resolution Imaging Spectroradiometer))

Le plancton est à l'origine d'une biomasse considérable, mais aussi d'une nécromasse qui constitue une part importante de certains sédiments (la craie est la nécromasse fossile de plancton marin). La sédimentation de la nécromasse planctonique est un des puits de carbone planétaire, mais aussi une des voies qui a permis la détoxication des océans primitifs trop riches en certains sels, de calcium notamment, pour permettre une vie complexe sur les modèles que nous connaissons.

Plancton et climat

Le plancton intervient dans le cycle du carbone, via la photosynthèse, mais aussi en émettant après sa mort des molécules soufrées qui contribuent à la nucléation des gouttes d'eau, c'est-à-dire à la formation des nuages et des pluies. Le diméthylsulfure est le plus abondant des composés biologiques soufré émis dans l'atmosphère et il l'est essentiellement à partir des océans. Il est dégradé dans l'atmosphère marine ; principalement en dioxyde de soufre, diméthylsulfoxyde (DMSO), acide sulfonique et acide sulfurique qui forme des aérosols dont les molécules se comportent comme des noyaux de condensation de nuages. Le plancton a ainsi une influence sur la formation des nuages, et secondairement sur les apports terrigènes à la mer par le ruissellement.(voir article sur le diméthylsulfure).

La biomasse planctonique par litre d'eau est en moyenne bien plus importante dans les eaux froides, même sous la calotte glaciaire, que dans les eaux chaudes tropicales, si elles sont éloignées de sources d'oligoéléments tels que les apports volcaniques des atolls coralliens.
Les phénomènes de remontée d'eau des profondeurs (« upwellings ») et d'endo-upwellings sont à l'origine de la répartition des masses de planctons qui conditionnent les espèces des réseaux trophiques supérieurs. Les modifications climatiques, en affectant les courants marins et la température de l'eau (et donc sa teneur passive en oxygène) pourraient modifier la répartition et la nature des masses de plancton et donc des ressources halieutiques. Des modifications importantes sont observées depuis près d'un siècle, mais la part des impacts de la surpêche et des pollutions (nitrates, pesticides, métaux lourds, turbidité, pollution thermique..) dans ces phénomènes est encore difficile à déterminer.

Plancton et oxygène

Le plancton est une des sources principales en oxygène de la planète. Grâce au phytoplancton, l'eau des océans stocke le CO2 dissous dans la couche superficielle et rejette l'oxygène dans l'air. Il est admis qu'un tiers du CO2 produit dans l'atmosphère est absorbé par les mers et les océans grâce au phytoplancton[9] soit autant que tous les végétaux terrestres et les plantes aquatiques, le dernier tiers étant celui qui serait responsable de l’augmentation des gaz à effet de serre dans l'atmosphère[10]. Plus de 150 scientifiques, originaires de 26 pays, ont lancé un appel international pour stopper l'acidification des océans, due à l'absorption en grande quantité de CO2, car elle menace les écosystèmes marins, notamment par la dissolution de nombreux organismes planctoniques à squelettes de calcaire[11]).

Histoire du plancton

Les microfossiles permettent d'étudier comment le plancton a évolué au sein de la biodiversité marine. Ils confirment l'importance des liens entre climat et plancton, et ont montré que lors des grandes crises d'extinction, le plancton aussi a été fortement affecté. En particulier, une étude récente qui a comparé le contenu en microfossiles de nanoplanctons de 823 carottes de sédiments marins provenant de 17 forages océaniques faits dans les hémisphères nord et sud. On a constaté qu'à la « limite Crétacé-Tertiaire » (dernière grande crise d'extinctions), ce sont 93% des espèces de nanoplancton possédant un test calcaire qui ont "subitement" disparu, avec une extinction plus rapide et plus massive dans l’hémisphère nord. Ceci est un indice de plus en faveur de l'hypothèse d'une cause qui serait la chute d'un gros astéroïde au Yucatan, d'autant que les dates sont corrélées avec une extinction massive d'espèces végétales terrestres en Amérique du Nord. Suite à cet évènement catastrophique, la diversité du nanoplancton est restée dans l’hémisphère nord beaucoup plus faible durant environ 40.000 ans et il lui a fallu près de 270.000 ans pour retrouver son niveau initial. Sa diversité est encore aujourd'hui plus importante dans l'hémisphère sud. Lors de cette extinction, le nanoplancton photosynthétique a aussi été fortement touché, ce qui laisse supposer que l'impact et les incendies ont libéré une grande quantité de métaux toxiques dans l'air et l'océan, qui aurait touché l'hémisphère nord, plus que la moitié sud de la planète. Le cuivre est toxique pour le plancton à très faible dose (quelques parties par milliard), mais du nickel, du cadmium et fer ont sans doute aussi été libérés en grande quantité, ainsi peut-être que du chrome, de l'aluminium et surtout du mercure et du plomb dont les effets toxiques, presque universels sont bien connus[12].

Menaces sur le plancton

Le taux de phytoplancton présent dans l'eau est mesuré à grande échelle, par satellite depuis 1979. Il subit des fluctuations cycliques, à échelle décennale, a priori liée au forçage climatique. La durée de l'observation est encore très insuffisante pour prédire des tendances à long terme[1], mais la modélisation et l'étude des paléoclimat peuvent aider à mieux comprendre les liens entre plancton et climat.

En 2006, Michael Behrenfeld (Université d'État de l'Oregon), montre dans le Journal Nature (7 décembre 2006), comment l’imagerie satellitale permet d'évaluer la quantité de chlorophylle dans l'eau, et que 60 % environ des mers de 1998 à 1999 ont eu un niveau d'activité planctonique très bas, en raison du phénomène El Niño, avant de récupérer avec La Niña puis de chuter régulièrement : de 1999 à 2005 (durant 6 ans). L'activité planctonique semble régulièrement diminuer, l’océan perdant – en moyenne, et chaque année - une capacité d’absorption de 190 millions de tonnes (Mt) de carbone par rapport à l'année précédente. Si cette tendance devait être confirmée dans les années à venir, le réchauffement climatique pourrait être accéléré. Ce sont en effet environ 695 Mt de CO2, soit plus que le total des émissions annuelles de la France, qui n’ont pas - en 6 ans - été absorbées dans les zones tropicales et équatoriales, suite au recul de l’activité planctonique.

Scott Doney[13], également dans la revue Nature, précise que, dans le même temps, la productivité a augmenté aux hautes latitudes en raison du réchauffement des eaux de surface, mais sans pouvoir compenser le déficit de la zone tropicale, le gain de productivité étant limité et concernant un volume d’eau très inférieur.

Il faut ajouter cet effet à ceux de l’acidification des océans, à ceux de leur surexploitation dont les impacts sont mal compris, à ceux du blanchiment ou de la mort des coraux, et à ceux de l’eutrophisation et de la turbidité anormale des estuaires et de vastes zones marines. Le plancton marin pourrait être mis à mal avant 2050, voire avant 2030 dans l'océan Austral. En Mer du Nord, depuis 1961, la part du plancton d’eau chaude ne cesse de croître par rapport à celle du plancton d’eau froide.

Le réchauffement est une cause possible, la plus souvent citée, avant l'acidification ou la pollution, en raison de la « stratification » des eaux qu’il engendre, laquelle implique une moindre remontée de sels nutritifs pour le plancton. La partie mobile du plancton contribuant elle-même indirectement à la formation des nuages, et au mélange des couches thermiques et de densité différente[3],[2], ce cycle pourrait s’auto-entretenir, d’autant que les poissons, qui contribuent aussi au mélange des couches de surface sont également de moins en moins nombreux, alors que les zones marines mortes sont en augmentation.

Des régressions importantes de phytoplancton semblent être déjà survenues, notamment il y a environ 55 millions d'années, à une période justement caractérisée par une augmentation des taux de gaz à effet de serre (de cause inconnue).

Méthodes d’étude du plancton

Gros plan d’une bouteille Niskin

Le plancton est traditionnellement prélevé à partir de filets appelés filets à plancton. Ces filets sont constitués d’un grand cercle métallique sur lequel est attaché une toile de nylon ou de soie de forme conique qui se termine par un récipient appelé collecteur. Il existe plusieurs modèles de toiles avec différentes tailles de mailles. La taille des mailles est sélectionnée en fonction de la taille des organismes que l’on souhaite récolter : elle est toujours inférieure à la taille des organismes visés. Le filet est descendu dans l’eau à l’aide d’un câble. La longueur de câble déployée permet de savoir à quelle profondeur maximale le filet est envoyé. Lorsque le filet est tiré par le câble, l’eau passe à travers les mailles du filet qui laissent échapper l’eau et tous les organismes qui ont une taille plus petite que les mailles du filet tandis que les plus gros s’accumulent dans le collecteur. L’entrée des filets est généralement munie d’une petite hélice appelée volucompteur qui permet de déterminer la quantité d’eau qui pénètre dans le filet. Une fois le filet remonté, le collecteur est démonté et son contenu est récupéré dans un récipient afin d’être étudié.

Le filet à plancton peut être utilisé de plusieurs façons. Si le bateau est à l’arrêt, le filet peut être remonté verticalement. La collecte donnera alors des informations sur la répartition verticale des espèces dans la colonne d'eau. Si le bateau est en mouvement, la collecte se fera horizontalement à une profondeur donnée et donnera des informations sur la répartition des espèces à cette profondeur. Dans ce cas, un filet muni d’un système de fermeture sera utilisé pour ne pas polluer la récolte au moment de la remontée du filet. Ces méthodes de collecte du plancton permettent de filtrer de grandes quantités d’eau ce qui permet d’effectuer des études dans différents types d’eaux y compris dans des zones pauvres en plancton. Elles sont cependant peu précises pour l’étude quantitative du plancton. En effet, même en utilisant un volucompteur, il reste difficile d’estimer précisément la quantité d’eau filtrée par le filet et comme le filet est traîné grâce à des câbles, il n’est pas facile d’effectuer des prélèvements à une profondeur exacte et constante. Cette méthode de collecte est donc généralement utilisée pour l’étude qualitative des espèces c’est-à-dire pour obtenir des informations sur la présence ou l’absence de telle ou telle espèce.

Rosette

Les études quantitatives précises utilisent des bouteilles de prélèvement. Il est existe plusieurs modèles. Les plus courantes sont les bouteilles Niskin. Ces bouteilles permettent de prélever un volume d’eau connu à une profondeur précise. La bouteille est un cylindre en plastique munis à chaque extrémité de deux clapets qui servent de bouchons. La bouteille est attachée sur un câble et les clapets sont maintenus ouverts soit par un système de ressort ou par une corde élastique en fonction des modèles. Elle est descendue dans l’eau avec les deux clapets ouverts. La longueur du câble déployée permet d’estimer la profondeur atteinte par la bouteille. Arrivée à la profondeur que l’on souhaite échantillonner, la bouteille est refermée à l’aide d’un petit poids appelé messager que l’on fait glisser le long du câble et qui va libérer les deux clapets de la bouteille. L’eau et le plancton qu’elle contient sont ainsi emprisonnés dans la bouteille étanche qui peut être remontée à la surface pour être vidée. Les bouteilles les plus récentes utilisent des électrovalves qui peuvent être actionnées à une profondeur prédéfinies grâce à un détecteur de pression ou à l’aide d’un signal électrique envoyé par l’utilisateur depuis la surface. La bouteille peut être utilisée seule ou couplée à d’autres bouteilles pour échantillonner simultanément à plusieurs profondeurs. Des supports métalliques appelés rosettes permettent de fixer ensemble jusqu’à 36 bouteilles de prélèvement et de déclencher la fermeture de chaque bouteille à différentes profondeurs. Il est ainsi possible d’échantillonner les différentes couches de la colonne d'eau et d’obtenir une répartition précise du plancton sur la verticale.

Le plancton et l'Homme

  • En 1952, Alain Bombard a traversé l'Atlantique en s'alimentant exclusivement de poissons, de planctons, d'eau de mer et d'eau de pluie. Il voulait prouver qu'une personne peut survivre longtemps sur un canot pneumatique de moins de cinq mètres avec pour seules ressources les produits de la mer et du ciel.

Notes et références

  1. a et b
  2. a, b et c études conduite par Katija et Dabiri au California Institute of Technology de Pasadena, relatée par la revue Nature (Brève NatureNews publiée on Line 2009/07/29, Nature doi:10.1038/news.2009.745) et Article Nature ; William K. Dewar ; Oceanography : A fishy mix ; Nature 460, 581-582 (2009/07/30) ; doi:10.1038/460581a ; online 2009/07/29 (payant)
  3. a, b et c Bibliographie
  4. C. C. Davis, 1955. The marine and fresh-water plankton, Michigan State Univ. Press, 562 p.
  5. Maëlle Thomas-Bourgneuf et Pierre Mollo, L'Enjeu plancton : L’écologie de l’invisible, éditions Charles Léopold Mayer, 2009, 272 p. (ISBN 978-2-84377-147-7) [lire en ligne], p. 21-23 
  6. OCEAN ET MERS (vie marine) vie pélagique|auteur= Lucien Laubier|année= 2008 |éditeur= Encyclopaedia Universalis|consulté le= 07 mai 2011
  7. OCEAN ET MERS (vie marine) vie pélagique|auteur= Lucien Laubier |année= 2008 |éditeur= Encyclopaedia Universalis |consulté le= 07 mai 2011
  8. (en) Gunter Dietrich, General oceanography, Wiley, 626 p. 
  9. Commission océanographique intergouvernementale (COI) de l'Unesco.
  10. Michael Behrenfeld, Université de l'Oregon, in le journal Nature du 7 décembre 2006
  11. Le CO2 se combine à une molécule d'eau (H2O) pour donner un ion positif H+ et un hydrogénocarbonate (HCO3) qui finit lui-même par se décomposer en carbonate (CO3) et en au autre H+. Résultat, la concentration de la mer en ion hydrogène (H+) augmente et elle devient plus corrosive, ce qui limite voir anéantit la synthèse de carbonate de calcium, principale brique de la formation du squelette externe de nombreux organismes planctoniques.
  12. Des traces de la météorite tueuse de dinosaures dans le nanoplancton Synthèse proposée par legeologue.com, consultée 2010/11/02
  13. Woods Hole Oceanographic Institution

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Plancton de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • plancton — [ plɑ̃ktɔ̃ ] n. m. • 1893; all. Plankton (1887), du gr. plagkton, neutre de plagktos « errant » ♦ Ensemble des organismes (en général de très petite taille) qui vivent en suspension dans l eau de mer. ⇒ pelagos . Le benthos, le necton et le… …   Encyclopédie Universelle

  • plancton — PLANCTÓN, planctonuri, s.n. Totalitatea organismelor vegetale şi animale, în general microscopice, care trăiesc în apă până la o adâncime de 200 m şi care constituie hrana peştilor şi a altor animale acvatice. ♢ Plancton atmosferic = ansamblul… …   Dicționar Român

  • plancton — Partículas casi microscópicas de vida animal y vegetal que existen en lagos y océanos y que constituyen la alimentación básica de los animales acuáticos. Diccionario Mosby Medicina, Enfermería y Ciencias de la Salud, Ediciones Hancourt, S.A. 1999 …   Diccionario médico

  • plâncton — s. m. [Biologia] Substância mista de organismos vegetais e animais de que se alimentam os peixes. = PLANCTO • [Brasil] Plural: plânctones ou plânctons. • [Portugal] Plural: plânctones …   Dicionário da Língua Portuguesa

  • plancton — (Del gr. πλαγκτόν, lo que va errante). m. Biol. Conjunto de organismos animales y vegetales, generalmente diminutos, que flotan y son desplazados pasivamente en aguas saladas o dulces …   Diccionario de la lengua española

  • Plancton — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Plancton — ► sustantivo masculino 1 BIOLOGÍA Conjunto de plantas y animales diminutos que flotan en el mar o las aguas dulces. FRASEOLOGÍA plancton aéreo BIOLOGÍA Conjunto de seres vivos de pequeño tamaño que flotan en la atmósfera. * * * plancton (del gr.… …   Enciclopedia Universal

  • PLANCTON — n. m. Organismes animaux et végétaux qui flottent dans la mer ou en eau douce au gré du courant. Le plancton de la mer des Sargasses …   Dictionnaire de l'Academie Francaise, 8eme edition (1935)

  • plancton — {{#}}{{LM P30614}}{{〓}} {{[}}plancton{{]}} ‹planc·ton› {{《}}▍ s.m.{{》}} Conjunto de pequeños organismos animales o vegetales acuáticos que flotan y se desplazan pasivamente en el agua. {{★}}{{\}}ETIMOLOGÍA:{{/}} Del griego planktón (lo que va… …   Diccionario de uso del español actual con sinónimos y antónimos

  • Plancton aérien — ● Plancton aérien ensemble des êtres vivants de petite taille rencontrés dans l atmosphère, incapables de voler, mais que vents et courants aériens retiennent longtemps loin du sol ou des eaux (bactéries, spores, pollen, jeunes araignées,… …   Encyclopédie Universelle

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”