Laplacien Discret

Laplacien Discret

Laplacien discret

Articles d'analyse vectorielle
Champ vectorielChamp scalaire
Objets d'étude
Champ vectoriel Champ scalaire
Équation aux dérivées partielles
de Laplace de Poisson
Opérateurs
Nabla Gradient
Rotationnel Divergence
Laplacien scalaire Bilaplacien
Laplacien vectoriel D'alembertien
Théorèmes
de Green de Stokes
de Helmholtz de flux-divergence
du gradient du rotationnel

Soit une fonction réelle f de deux variables réelles {x, y}; on appelle, en analyse numérique, laplacien discret de f la dérivée seconde discrète selon x + celle selon y, soit :

\Delta_{discret}f = \frac{[f(x+h,y)+f(x-h,y)-2f(x,y)]+[f(x,y+h)+f(x,y-h)-2f(x,y)]}{h^2}

  • Cela est souvent utilisé pour résoudre des problèmes de conduction de la chaleur sur des domaines de frontières assez compliquées, pour lesquels il n'y a pas de solution analytique.
  • L'écriture est ici en dimension d= 2 ; c'est-à-dire pour un plan, et elle est écrite en cartésienne. Du coup, on comprend qu'en dimension d = n, il y aura 2n+1 valeurs pour écrire le laplacien discret.

Or ce n'est pas très astucieux : par exemple en dimension d= 2 , au lieu d'un carré entourant le point (x, y), on aurait pu prendre un triangle équilatéral, ce qui économise 1 point de calcul. En d=3 , on réfléchit que le tétraèdre régulier est mieux que le cube (ou l'icosaèdre).

D'une manière générale, les mathématiciens en analyse numérique "optimisent" ce qu'on appelle le maillage des points sur lesquels ils doivent opérer les calculs : cela fait gagner ENORMEMENT de temps. Penser simplement à un problème de Météo : on fait tourner actuellement parmi les plus gros ordinateurs pour avoir le temps disons à 24h près : si l'ordinateur mettait 24h à les faire, ce ne serait guère utile .

Voir aussi

  • Portail des mathématiques Portail des mathématiques
  • Portail de la physique Portail de la physique
  • Portail de la géodésie et de la géophysique Portail de la géodésie et de la géophysique
Ce document provient de « Laplacien discret ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Laplacien Discret de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Laplacien discret — Soit une fonction réelle f de deux variables réelles {x, y}; on appelle, en analyse numérique, laplacien discret de f la dérivée seconde discrète selon x + celle selon y, soit : Cela est souvent utilisé pour résoudre des problèmes de… …   Wikipédia en Français

  • Laplacien — Opérateur laplacien Articles d analyse vectorielle Objet …   Wikipédia en Français

  • Laplacien (signification physique) — Opérateur laplacien Articles d analyse vectorielle Objet …   Wikipédia en Français

  • Laplacien scalaire — Opérateur laplacien Articles d analyse vectorielle Objet …   Wikipédia en Français

  • Opérateur laplacien — L opérateur laplacien, ou simplement le laplacien, est l opérateur différentiel défini par l application de l opérateur gradient suivie de l application de l opérateur divergence. Il apparaît dans la formulation mathématique de nombreuses… …   Wikipédia en Français

  • Operateur laplacien — Opérateur laplacien Articles d analyse vectorielle Objet …   Wikipédia en Français

  • Opérateur laplacien scalaire — Opérateur laplacien Articles d analyse vectorielle Objet …   Wikipédia en Français

  • Mouvement Central Discret — Pour des personnes n ayant aucun bagage en calcul différentiel et intégral, la mécanique peut quand même se comprendre en utilisant le calcul des différences discrètes : c est à dire transposer les règles différentielles en règles de… …   Wikipédia en Français

  • Mouvement central discret — Pour des personnes n ayant aucun bagage en calcul différentiel et intégral, la mécanique peut quand même se comprendre en utilisant le calcul des différences discrètes : c est à dire transposer les règles différentielles en règles de… …   Wikipédia en Français

  • Opérateur de Laplace — Opérateur laplacien Articles d analyse vectorielle Objet …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”