Caractère (mathématiques)

Caractère (mathématiques)
Page d'aide sur l'homonymie Pour les articles homonymes, voir Caractère.

En mathématiques, un caractère est une notion associée à la théorie des groupes.

Un caractère sur un groupe G, est un morphisme de G dans le groupe multiplicatif (C*,•) du corps des nombres complexes.

Les caractères permettent une généralisation de l'analyse harmonique à de nombreux groupes.

Sommaire

Définitions

Ici G désigne un groupe, C le corps des nombres complexes et C* son groupe des unités.

Un caractère de G est un morphisme de groupe de G dans C*.

Ils correspondent à un cas particulier de représentations, celles complexe de dimension un.

Un exemple d'un tel caractère en mathématiques est le caractère de Dirichlet.

Le groupe dual de G est l'ensemble des caractères du groupe munis de la multiplication des fonctions.

Si le groupe G est topologique, alors un caractère est par définition continu, si G est un groupe de Lie, alors un caractère est différentiable.

La notion de caractère se généralise aux structures d'algèbres (i.e. un espace vectoriel muni d'une structure d'anneau).

Un caractère sur une algèbre est un morphisme d'algèbre (au sens de la structure d'espace vectoriel et de la structure multiplicative) de l'algèbre dans C.

Dans le cas où l'algèbre est l'algèbre d'un groupe, alors les deux notions sont équivalentes.

Un caractère d'une représentation est une notion associée aux représentations d'un groupe, elle correspond à la trace de l'image d'un élément du groupe par la représentation.

Groupe fini

Structure du groupe dual

Article détaillé : Caractère d'un groupe fini.

Dans le cas d'un groupe fini, le groupe dual est aussi fini. Il s'identifie au caractères de l'algèbre du groupe complexe associé et forme une famille orthogonale incluse dans le centre de l'algèbre.

Si le groupe est de plus abélien, alors le groupe dual est isomorphe à G, les caractères forment alors une base orthonormale de l'algèbre.

Analyse harmonique sur un groupe abélien fini

Dans le contexte d'un groupe abélien fini, la théorie de l'analyse harmonique est relativement simple à établir. La transformée de Fourier correspond à une somme finie et le groupe dual est isomorphe à G.

En conséquence, les résultats classiques comme l'égalité de Parseval, le théorème de Plancherel ou la formule sommatoire de Poisson s'appliquent.

Dualité de Pontryagin

Article détaillé : Dualité de Pontryagin.

L'objectif de la théorie de la dualité de Pontryagin est la généralisation de l'analyse harmonique au cas où le groupe est abélien et localement compact.

Associée à la mesure de Haar introduite par John von Neumann, André Weil et d'autres, elle permet d'établir les principaux résultats associés à la transformée de Fourier.

Références

  • Jean-Pierre Serre, Cours d'arithmétique [détail des éditions]
  • J.-P. Serre, Représentations linéaires des groupes finis
  • André Warusfel, Structures algébriques finies, Hachette, 1971
  • G. Peyré, L'algèbre discrète de la transformée de Fourier, Ellipses, 2004
  • Jacques Dixmier, Les C*-algèbres et leurs Représentations, Gauthier-Villars, 1969
  • (en) Walter Rudin, Fourier Analysis on Groups, 1962

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Caractère (mathématiques) de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Caractere (mathematiques) — Caractère (mathématiques) Pour les articles homonymes, voir Caractère. En mathématiques, un caractère est une notion associée à la théorie des groupes. Un caractère sur un groupe G, est un morphisme de G dans le groupe multiplicatif (C*,•) du… …   Wikipédia en Français

  • Caractère (Mathématiques) — Pour les articles homonymes, voir Caractère. En mathématiques, un caractère est une notion associée à la théorie des groupes. Un caractère sur un groupe G, est un morphisme de G dans le groupe multiplicatif (C*,•) du corps des nombres complexes.… …   Wikipédia en Français

  • MATHÉMATIQUES (DIDACTIQUE DES) — Les problèmes posés par l’enseignement des mathématiques ne sont pas nouveaux. Au début du siècle, Henri Lebesgue était préoccupé par les conditions de l’enseignement et de la formation des professeurs. Des efforts plus récents se sont déployés… …   Encyclopédie Universelle

  • MATHÉMATIQUES (FONDEMENTS DES) — Au sens premier et fort, le mot «fondement» désigne la base, jugée inébranlable, sur laquelle repose un corps d’énoncés, un système de connaissances, un complexe de croyances ou de conduites. «Reposer sur la base» signifie ici «trouver en elle à… …   Encyclopédie Universelle

  • Caractere d'un groupe fini — Caractère d un groupe fini En mathématiques, un caractère d un groupe fini est une notion associée à la théorie des groupes. Un caractère d un groupe fini G est un morphisme du groupe G dans C* le corps des nombres complexes non nuls. Ce concept… …   Wikipédia en Français

  • Caractère D'un Groupe Fini — En mathématiques, un caractère d un groupe fini est une notion associée à la théorie des groupes. Un caractère d un groupe fini G est un morphisme du groupe G dans C* le corps des nombres complexes non nuls. Ce concept permet de définir le groupe …   Wikipédia en Français

  • Mathematiques indiennes — Mathématiques indiennes La chronologie des mathématiques indiennes s étend de la civilisation de la vallée de l Indus ( 3300 à 1500) jusqu à l Inde moderne. Parmi les impressionnantes contributions des mathématiciens indiens au développement de… …   Wikipédia en Français

  • Mathématiques Indiennes — La chronologie des mathématiques indiennes s étend de la civilisation de la vallée de l Indus ( 3300 à 1500) jusqu à l Inde moderne. Parmi les impressionnantes contributions des mathématiciens indiens au développement de la discipline, la plus… …   Wikipédia en Français

  • Caractere d'une representation d'un groupe fini — Caractère d une représentation d un groupe fini Fichier:Ferdinand Georg Frobenius.jpg Ferdinand Georg Frobenius fondateur de la théorie des caractères En mathématiques le caractère d une représentation d un groupes finis est un outil utilisé pour …   Wikipédia en Français

  • Caractere de Dirichlet — Caractère de Dirichlet Johann Peter Gustav Lejeune Dirichlet En mathématiques, et plus précisément en arithmétique modulaire, un caractère de Dirichlet est une fonction souvent notée χ de l ensemble des congruences sur les entiers dans l ensemble …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”