Fonction conjuguée

Fonction conjuguée

En mathématiques, et plus précisément en analyse convexe, la fonction conjuguée est une fonction construite à partir d'une fonction réelle f définie sur un espace vectoriel \mathbb{E}, qui est utile

La fonction conjuguée de f est le plus souvent notée f * . C'est une fonction convexe, même si f ne l'est pas, définie sur les pentes, c'est-à-dire sur les éléments de l'espace vectoriel dual de \mathbb{E}. La définition est motivée et précisée ci-dessous.

L'application f\to f^* est appelée transformation de Fenchel ou transformation de Legendre ou encore transformation de Legendre-Fenchel, d'après Adrien-Marie Legendre et Werner Fenchel (en).

Connaissances supposées : l'algèbre linéaire, le calcul différentiel, les bases de l'analyse convexe (notamment les principales notions attachées aux ensembles et aux fonctions convexes) ; le sous-différentiel d'une fonction convexe est utilisé pour motiver la définition de fonction conjuguée.

Sommaire

Motivations

La complexité apparente du concept de fonction conjuguée requiert d'en motiver la définition.

Convexification de fonction

Par définition, une fonction est convexe si son épigraphe est convexe. Convexifier une fonction f:\mathbb{E}\to\bar{\R} consiste à déterminer la plus grande fonction convexe, disons fermée, minorant f. En termes d'épigraphe, cela revient à trouver le plus petit convexe fermé contenant l'épigraphe de f, c'est-à-dire à prendre l'enveloppe convexe fermée de l'épigraphe


\operatorname{epi}\,f\subset\mathbb{E}\times\R.

Comme toute enveloppe convexe fermée, celle de \operatorname{epi}\,f est l'intersection de tous les demi-espaces fermés contenant \operatorname{epi}\,f, c'est-à-dire d'ensembles de la forme


H^-(\xi,\tau,t):=\{(x,\alpha)\in \mathbb{E}\times\R:\langle\xi,x\rangle+\tau\alpha\leqslant t\},

(\xi,\tau,t)\in\mathbb{E}\times\R\times\R. Il est facile de voir que lorsque H (ξ,τ,t) contient un épigraphe, on doit avoir \tau\leqslant 0. Il est plus fin de montrer que, dans l'expression de l'enveloppe convexe fermée de \operatorname{epi}\,f comme intersection des H (ξ,τ,t), on peut ne garder que les demi-espaces avec τ < 0. Or ceux-ci sont les épigraphes des minorantes affines de f de la forme


x\mapsto\left\langle\frac{-\xi}{\tau},x\right\rangle+\frac{t}{\tau}.

Résumons. Comme on pouvait s'y attendre, la convexifiée fermée de f est l'enveloppe supérieure de toutes les minorantes affines de f. Parmi les minorantes affines x\mapsto \langle s,x\rangle+\alpha ayant une pente s\in\mathbb{E} fixée, on peut aussi ne garder que celle qui est la plus haute, c'est-à-dire celle qui a le plus grand α. Il faut donc déterminer le plus grand α tel que


\forall\, x\in \mathbb{E}\,:\quad
\langle s,x\rangle+\alpha\leqslant f(x)
\quad\mbox{ou}\quad
\langle s,x\rangle-f(x)\leqslant-\alpha.

On voit clairement que la plus petite valeur de − α est donnée par


f^*(s):= \sup_{x \in \mathbb{E}} \Bigl(\langle  s, x \rangle - f(x)\Bigr).

C'est la valeur de la conjuguée de f en s. On s'intéresse à − α plutôt qu'à α pour définir f * dans le but d'obtenir ainsi une fonction conjuguée convexe.

Voie d'accès au sous-différentiel

Dans cette section, nous montrons l'intérêt du concept de fonction conjuguée comme un outil permettant de calculer le sous-différentiel d'une fonction convexe.

Le sous-différentiel \partial f(x) d'une fonction convexe f en x est l'ensemble des pentes des minorantes affines de f (i.e., des fonctions affines qui minorent f), qui sont exactes en x (i.e., qui ont la même valeur que f en x). Pour x donné, il n'est pas toujours aisé de spécifier toutes les minorantes affines exactes en x. Il est parfois plus facile de se donner une pente s de minorante affine x\mapsto\langle s,x\rangle+\alpha et de chercher les points auxquels elle peut être exacte par modification de α. De ce point de vue, on cherche le plus grand α tel que


\forall\, x\in \mathbb{E}\,:\quad
\langle s,x\rangle+\alpha\leqslant f(x)
\quad\mbox{ou}\quad
\langle s,x\rangle-f(x)\leqslant-\alpha.

On voit clairement que la plus petite valeur de − α est donnée par


f^*(s):= \sup_{x \in \mathbb{E}} \Bigl(\langle  s, x \rangle - f(x)\Bigr).

C'est la valeur de la conjuguée de f en s. On s'intéresse à − α plutôt qu'à α pour définir f * dans le but d'obtenir ainsi une fonction conjuguée convexe. Revenons au problème que nous nous posions au début de ce paragraphe : si x est solution du problème de maximisation ci-dessus, alors \langle s,x\rangle-f(x)\geqslant \langle s,y\rangle-f(y) pour tout y\in \mathbb{E} ou encore


\forall\, y\in \mathbb{E}\,:\quad
f(y)\geqslant f(x)+\langle s,y-x\rangle.

Ces inégalités montrent que y\mapsto f(x)+\langle s,y-x\rangle est une minorante affine de f, exacte en x.

Fonction définie sur un espace euclidien

On suppose dans cette section que les fonctions sont définies sur un espace vectoriel euclidien \mathbb{E} (de dimension finie donc), dont le produit scalaire est noté \langle\cdot,\cdot\rangle et la norme associée \|\cdot\|.

On note

  • \operatorname{Conv}(\mathbb{E}) l'ensemble des fonctions définies sur \mathbb{E} à valeurs dans \bar{\R}:=\R\cup\{-\infty,+\infty\} qui sont convexes (i.e., leur épigraphe est convexe) et propres (i.e., elles ne prennent pas la valeur -\infty et ne sont pas identiquement égales à +\infty),
  • \operatorname{C\overline{onv}}(\mathbb{E}) la partie de \operatorname{Conv}(\mathbb{E}) formée des fonctions qui sont aussi fermées (i.e., leur épigraphe est fermé).

La conjuguée et ses propriétés

On a choisi de désigner par s l'argument de f * pour se rappeler qu'il s'agit d'une pente (slope en anglais), c'est-à-dire un élément de l'espace dual de \mathbb{E}, ici identifié à \mathbb{E} par le théorème de représentation de Riesz.

Fonction conjuguée — Soit f: \mathbb{E} \to \bar{\R} une fonction (non nécessairement convexe). Sa fonction conjuguée est la fonction f^*:\mathbb{E} \to \bar{\R} définie en s \in \mathbb{E} par


f^*(s):= \sup_{x \in \mathbb{E}} \Bigl(\langle  s, x \rangle - f(x)\Bigr).

L'application f\mapsto f^* est appelée transformation de Legendre-Fenchel.

On s'intéresse ci-dessous à la convexité et au caractère propre et fermé de la conjuguée f * . La convexité de f * est une propriété remarquable de la conjuguée, puisqu'on se rappelle que f n'est pas nécessairement convexe.

Conjuguée convexe fermée — Quelle que soit f: \mathbb{E} \to \bar{\R}, sa conjuguée f * est convexe et fermée. Par ailleurs, on a les équivalences suivantes


f\not\equiv+\infty
\qquad\Longleftrightarrow\qquad
f^*>-\infty
\qquad\Longleftrightarrow\qquad
f^*\not\equiv-\infty,

f~\mbox{a une minorante affine}
\qquad\Longleftrightarrow\qquad
f^*\not\equiv+\infty.

Enfin, les propriétés suivantes sont équivalentes :

  1. f est propre et a une minorante affine,
  2. f * est propre,
  3. f^*\in\operatorname{C\overline{onv}}(\mathbb{E}).

On se rappellera qu'une fonction convexe et propre a nécessairement une minorante affine ; elle vérifie donc les propriétés du point 1 ci-dessus, si bien que


f\in\operatorname{Conv}(\mathbb{E})
\quad\Longrightarrow\quad
f^*\in\operatorname{C\overline{onv}}(\mathbb{E}).

La biconjuguée et ses propriétés

On peut bien sûr appliquer la transformation de Legendre-Fenchel à la fonction conjuguée f *  ; on obtient ainsi la biconjuguée de f, notée f * * .

Fonction biconjuguée — Soit f: \mathbb{E} \to \bar{\R} une fonction (non nécessairement convexe). Sa fonction biconjuguée est la fonction f^{**}:\mathbb{E} \to \bar{\R} définie en x \in \mathbb{E} par


f^{**}(x):= \sup_{s \in \mathbb{E}} \Bigl(\langle  s, x \rangle - f^*(s)\Bigr),

f^*:\mathbb{E}\to\bar{\R} est la conjuguée de f.

Le caractère convexe, fermé et propre de la biconjuguée est examiné dans le résultat suivant.

Biconjuguée convexe fermée — Quelle que soit f: \mathbb{E} \to \bar{\R}, sa biconjuguée f * * est convexe et fermée. Par ailleurs, les propriétés suivantes sont équivalentes :

  1. f est propre et a une minorante affine,
  2. f^{**}\in\operatorname{C\overline{onv}}(\mathbb{E}).

Si l'argument s de f * est une pente (identifiée à un élément de \mathbb{E}), l'argument x de f * * est dans l'espace de départ \mathbb{E}. On peut alors se demander s'il y a un lien entre f et f * * . La proposition suivante examine cette question. On y a noté \bar{f}, la fermeture de f.

Enveloppe convexe fermée — Soit f:\mathbb{E}\to\bar{\R} une fonction propre ayant une minorante affine. Alors

  1. sa biconjuguée f * * est l'enveloppe supérieure des minorantes affines de f, en particulier f^{**}\leqslant f,
  2. f\in\operatorname{Conv}(\mathbb{E})~~\Longrightarrow~~f^{**}=\bar{f},
  3. f\in\operatorname{C\overline{onv}}(\mathbb{E})~~\Longleftrightarrow~~f^{**}=f,
  4. la transformation de Legendre-Fenchel f\mapsto f^* est une bijection sur l'ensemble \operatorname{C\overline{onv}}(\mathbb{E}).

Voici un corollaire de ce résultat.

Corollaire — Si f\in\operatorname{Conv}(\mathbb{E}) et x\in\operatorname{dom}\,f, alors f(x) = f * * (x) si, et seulement si, f est semi-continue inférieurement en x.

Si on prend la conjuguée de la biconjuguée, on trouve la conjuguée. Il n'y a donc pas de notion de triconjuguée.

Pas de triconjuguée — Soit f:\mathbb{E}\to\bar{\R} une fonction propre ayant une minorante affine. Alors (f * * ) * = f * .

Règles de calcul de conjuguée

Inf-image sous une application linéaire

Rappelons la définition de l'inf-image d'une fonction sous une application linéaire. On se donne deux espaces euclidiens \mathbb{E} et \mathbb{F} (on aura besoin ici d'un produit scalaire sur \mathbb{E} et \mathbb{F}, alors que cette structure n'est pas nécessaire dans la définition de f\veebar A), une fonction f:\mathbb{E}\to\bar{\R} et une application linéaire A:\mathbb{E}\to \mathbb{F}. Alors l'inf-image de f sous A est l'application notée f\veebar A:\mathbb{F}\to\bar{\R} et définie en y\in \mathbb{F} par


(f\veebar A)(y)=\inf_{{x\in \mathbb{E}}\atop{Ax=y}}\;f(x).

Conjuguée d'une inf-image sous une application linéaire — Dans les conditions énoncées ci-dessus, on a


(f\veebar A)^*=f^*\circ A^*.

Par ailleurs, si f est propre et a une minorante affine et si A vérifie


\mathcal{R}(A^*)\cap\operatorname{dom}\,f^*\ne\varnothing,

alors f\veebar A est propre et a une minorante affine, si bien qu'alors (f\veebar A)^*\in\operatorname{C\overline{onv}}(\mathbb{F}).

Pré-composition avec une application linéaire

Exemples

Norme

Soit


f:\mathbb{E}\to\R:x\mapsto \|x\|

une norme sur un espace euclidien \mathbb{E}, non nécessairement dérivée du produit scalaire \langle\cdot,\cdot\rangle de \mathbb{E}. On introduit la norme duale


\|s\|_{_D}:=\sup_{\|x\|\leqslant 1}\;\langle s,x\rangle

et la boule-unité duale fermée


\bar{B}_{_D}:=\{s\in\mathbb{E}:\|s\|_{_D}\leqslant 1\}.

La fonction conjuguée f^*:\mathbb{E}\to\R de f est l'indicatrice de la boule unité duale ; elle prend donc en s\in\mathbb{E} la valeur suivante

f^*(s)=
\mathcal{I}_{\bar{B}_{_D}}(s):=
\left\{\begin{array}{lll}
0 & \mbox{si} & \|s\|_{_D}\leq1\\
+\infty & \mbox{sinon}.
\end{array}\right.


Considérons à présent, la puissance p > 1 d'une norme


f:\mathbb{E}\to\R:x\mapsto \frac{1}{p}\,\|x\|^p.

Sa fonction conjuguée f^*:\mathbb{E}\to\R prend en s\in\mathbb{E} la valeur suivante

f^*(s)=\frac{1}{p'}\,\|s\|_{_D}^{p'},

p':=p/(p-1)\in{]0,1[} est le nombre conjugué de p :


\frac{1}{p}+\frac{1}{p'}=1.

Distance à un convexe

Valeur propre maximale

Annexes

Éléments d'histoire

La fonction conjuguée fut introduite par Mandelbrojt (1939) pour une fonction d'une seule variable réelle ; puis précisée et améliorée par Fenchel (1949) aux fonctions convexes dépendant d'un nombre fini de variables. Ce dernier introduit la notation f * pour la conjuguée de f. La conjugaison généralise une transformation de fonction introduite bien plus tôt par Legendre (1787). L'extension aux espaces vectoriels topologiques est due à Brønsted (1964), Moreau (1967) et Rockafellar.

Articles connexes

Bibliographie

  • (en) J. M. Borwein, A. S. Lewis (2000). Convex Analysis and Nonlinear Optimization. Springer, New York.
  • (en) A. Brøndsted (1964). Conjugate convex functions in topological vector spaces. Matematiskfysiske Meddelelser udgivet af det Kongelige Danske Videnskabernes Selskab, 34, 1–26.
  • (en) W. Fenchel (1949). On conjugate functions. Canadian Journal of Mathematics, 1, 73–77.
  • (en) J.-B. Hiriart-Urruty, C. Lemaréchal (1993). Convex Analysis and Minimization Algorithms. Grundlehren der mathematischen Wissenschaften, 305-306. Springer-Verlag.
  • (en) J.-B. Hiriart-Urruty, C. Lemaréchal (2001). Fundamentals of convex analysis. Springer-Verlag, Berlin.
  • A.M. Legendre (1787). Mémoire sur l’intégration de quelques équations aux différences partielles. Mém. Acad. Sciences, pages 309–351.
  • (en) S. Mandelbrojt (1939). Sur les fonctions convexes. C. R. Acad. Sci. Paris, 209, 977-978.
  • J.J. Moreau (1967). Fonctionnelles convexes. Séminaire Équations aux dérivees partielles, Collège de France.
  • (en) R.T. Rockafellar (1970). Convex Analysis. Princeton Mathematics Ser. 28. Princeton University Press, Princeton, New Jersey.

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Fonction conjuguée de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Fonction d'appui — En analyse mathématique, et plus spécialement en analyse convexe, la fonction d appui d une partie P d un espace normé est la fonction convexe qui à une forme linéaire continue s sur associe la borne supérieure de s(P) dans . Sommaire …   Wikipédia en Français

  • Fonction De Green — On appelle fonction de Green en physique ce que les mathématiciens appellent solution élémentaire d une équation différentielle linéaire à coefficients constants, ou d une équation aux dérivées partielles linéaire à coefficients constants. Ces… …   Wikipédia en Français

  • Fonction de green — On appelle fonction de Green en physique ce que les mathématiciens appellent solution élémentaire d une équation différentielle linéaire à coefficients constants, ou d une équation aux dérivées partielles linéaire à coefficients constants. Ces… …   Wikipédia en Français

  • Fonction indicatrice (analyse convexe) — Pour les articles homonymes, voir Fonction caractéristique. En mathématiques, et plus précisément en analyse convexe, la fonction indicatrice d une partie P d un ensemble est la fonction qui s annule sur P et prend la valeur sur le complémentaire …   Wikipédia en Français

  • Fonction de Green — On appelle fonction de Green en physique ce que les mathématiciens appellent solution élémentaire ou fondamentale d une équation différentielle linéaire à coefficients constants, ou d une équation aux dérivées partielles linéaire à coefficients… …   Wikipédia en Français

  • CONVEXITÉ - Fonctions convexes — L’étude des fonctions convexes a permis de fournir un cadre dans lequel peut se résoudre toute une classe de problèmes d’analyse fonctionnelle non linéaire; les problèmes ainsi abordés sont des questions d’optimisation provenant de divers… …   Encyclopédie Universelle

  • Sous-différentiel — En mathématiques, et plus précisément en analyse convexe, le sous différentiel est un concept permettant de décrire la variation locale d une fonction convexe (à valeurs réelles donc) non nécessairement différentiable dans un sens classique,… …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Transformation de Legendre — La transformation de Legendre est une opération mathématique qui, schématiquement, transforme une fonction définie par sa valeur en un point en une fonction définie par sa tangente. Les cas classiques d utilisation de la transformation de… …   Wikipédia en Français

  • Analyse convexe — L analyse convexe est la branche des mathématiques qui étudie les ensembles et les fonctions convexes. Cette théorie étend sur beaucoup d aspects les concepts de l algèbre linéaire et sert de boîte à outils en analyse et en analyse non lisse.… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”