Minimisation d'une fonction

Minimisation d'une fonction

Optimisation (mathématiques)

En mathématiques, l'optimisation est l’étude des problèmes qui sont de la forme :

Étant donné : une fonction f : A \rightarrow \mathbb R d’un ensemble A dans l'ensemble des nombre réels
Rechercher : un élément x0 de A tel que f(x_0) \ge f(x) pour tous les x en A (« maximisation ») ou tel que f(x_0) \le f(x) pour tous les x en A (« minimisation »).

Une telle formulation est parfois appelée programme mathématique (terme non directement lié à la programmation informatique, mais utilisé par exemple pour la programmation linéaire - voir l’historique ci-dessous). Plusieurs problèmes théoriques et pratiques peuvent être étudiés dans cet encadrement général.

Étant donné que la maximisation de f est équivalente à la minimisation de f, une méthode pour trouver le minimum (ou le maximum) suffit à résoudre le problème d'optimisation.

Il arrive fréquemment que A soit un sous-ensemble donné de l’espace euclidien \mathbb R^n, souvent spécifié par un ensemble de contraintes, des égalités ou des inégalités que les éléments de A doivent satisfaire. Les éléments de A sont appelées les solutions admissibles et la fonction f est appelée la fonction objectif. Une solution possible qui maximise (ou minimise, si c’est le but) la fonction objectif est appelée une solution optimale. Dans le cas particulier où A est un sous-ensemble de \mathbb N^n ou de \mathbb N^p\times \mathbb R^q, on parle d'optimisation combinatoire.

Un minimum local x * est défini comme un point tel qu'il existe un voisinage V de x * tel que pour tout x\in V, f(x) \ge f(x^*) ; c’est-à-dire que dans une voisinage de x * toutes les valeurs de la fonction sont plus grandes que la valeur en ce point. Lorsque A est un sous-ensemble de \mathbb R^n, ou plus généralement un espace vectoriel normé, cela s'écrit : pour un δ > 0 donné et tous les x tels que ||x - x^*|| \le \delta on a f(x) \ge f(x^*). Les maximums locaux sont définis semblablement. En général, il est facile de trouver les minimums (maximums) locaux, qui sont parfois nombreux. Pour vérifier que la solution trouvée est un minimum (maximum) global, il est nécessaire de recourir à des connaissances additionnelles sur le problème (par exemple la convexité de la fonction objectif).

Sommaire

Notation

Les problèmes d’optimisation sont souvent exprimés avec une notation spéciale. Voici quelques exemples :

\min_{x \in \mathbb{R}} x^2 + 1

On cherche la valeur minimale pour l’expression x2 + 1, où x s’étend sur les nombres réels \mathbb R. La valeur minimale dans ce cas est 1, s’occasionnant à x = 0.

\max_{x \in \mathbb{R}} 2x

On cherche la valeur maximale pour l’expression 2x, où x s’étend sur les réels. Dans ce cas, il n’y a pas de tel maximum puisque l’expression n’est pas bornée, donc la réponse est « l’infini » ou « indéfini ».

\arg \min_{x \in ]-\infty, -1]} x^2 + 1

On cherche la ou les valeurs de x dans l'intervalle ]-\infty, -1] qui minimise l'expression x2 + 1. (La valeur minimale véritable de cette expression n'est pas importante.) Dans ce cas, la réponse est x = − 1.

\arg \max_{x \in [-5, 5], y \in \mathbb{R}} x \cos(y)

On cherche la ou les paires (x,y) qui maximisent la valeur de l'expression xcos(y), avec la contrainte ajoutée que la valeur absolue de x ne peut excéder 5. (À nouveau, la valeur maximale véritable de l'expression n'est pas importante.) Dans ce cas, les solutions sont les paires de la forme (5,2kπ) et ( − 5,(2k + 1)π), où k s'étend sur tous les entiers.

Techniques

Les techniques pour résoudre les problèmes mathématiques dépendent de la nature de la fonction objectif de l'ensemble contraint. Les sous-domaines majeurs suivants existent :

  • la programmation linéaire étudie les cas où la frontière de l’ensemble A et la fonction objectif sont linéaires. C’est une méthode très employée pour établir les programmes des raffineries pétrolières, mais aussi pour déterminer la composition la plus rentable d’un mélange salé, sous contraintes, à partir des prix de marché du moment.
  • la programmation linéaire en nombres entiers étudie les programmes linéaires dans lesquels certaines ou toutes les variables sont contraintes à prendre des valeurs entières. Ces problèmes peuvent être résolus par différentes méthodes: séparation et évaluation, plans sécants.
  • la programmation quadratique permet à la fonction objectif d’avoir des termes quadratiques, tout en conservant une description de l’ensemble A à partir d'égalités/inégalités linéaires
  • la programmation non-linéaire étudie le cas général dans lequel l’objectif ou les contraintes (ou les deux) contiennent des parties non-linéaires
  • la programmation stochastique étudie le cas dans lequel certaines des contraintes dépendent de variables aléatoires
  • la programmation dynamique utilise la propriété qu’une solution optimale se compose nécessairement de sous-solutions optimales (attention : le contraire n'est pas vrai en général) pour décomposer le problème en évitant l’explosion combinatoire. Elle n’est utilisable que lorsque la fonction objectif est monotone croissante. C’est la programmation dynamique qui permet par exemple
    • aux avionneurs de trouver les plans de décollage optimaux de leurs engins,
    • aux ingénieurs de bassin de répartir la production minière entre leurs différents puits
    • aux media planners de répartir efficacement un budget de publicité entre différents supports

Pour les fonctions dérivables deux fois, des problèmes sans contraintes peuvent être résolus en trouvant les lieux où le gradient de la fonction est 0 (par exemple les points stationnaires) et en utilisant la matrice hessienne pour classer le type de point. Si le hessien est défini positif, le point est un minimum local ; s’il est un défini négatif, un maximum local et s’il est indéfini c’est un « point-col ».

Si la fonction est convexe sur l’ensemble des solutions admissibles (définies par les contraintes) alors tout minimum local est aussi un minimum global. Des techniques numériques robustes et rapides existent pour optimiser des fonctions convexes doublement dérivables. En dehors de ces fonctions, des techniques moins efficaces doivent être employées.

Les problèmes à contraintes peuvent souvent être transformés en des problèmes sans contraintes à l’aide du multiplicateur de Lagrange : cette méthode revient en effet à introduire des pénalités croissantes à mesure qu’on se rapproche des contraintes. Un algorithme dû à Hugh Everett permet de mettre à jour de façon cohérente les valeurs des multiplicateurs à chaque itération pour garantir la convergence. Celui-ci a également généralisé l'interprétation de ces multiplicateurs pour les appliquer à des fonctions qui ne sont ni continues, ni dérivables. Le lambda devient alors juste un coefficient de pénalité.

De nombreuses techniques existent pour trouver un bon minimum local dans les problèmes d’optimisation non-linéaires avec plusieurs minimums locaux pauvres, elles sont généralement considérées comme des métaheuristiques.

Utilisations

Les problèmes de la dynamique à corps rigides (surtout la dynamique des corps rigides articulée) ont souvent besoin de techniques de programmation mathématique, puisqu'on peut voir la dynamique des corps rigides comme résolution d'une équation différentielle ordinaire sur une variété contrainte ; les contraintes sont diverses contraintes géométriques non-linéaires telles que « ces deux points doivent toujours coïncider », ou « ce point doit toujours être sur cette courbe ». Aussi, le problème de calculer les forces de contact peut être achevé en résolvant un problème de complémentarité linéaire, qui peut aussi être vu comme un PPQ (problème de programmation quadratique).

Plusieurs problèmes de conception peuvent aussi être exprimés sous forme de programmes d’optimisation. Cette application est appelée l’optimisation de forme. Un sous-ensemble récent et croissant de ce domaine s’appelle l’Optimisation multidisciplinaire qui, bien qu’utile en plusieurs problèmes, a été particulièrement appliqué aux problèmes du génie aérospatial.

Un autre domaine qui utilise les techniques de l’optimisation est la recherche opérationnelle.

L’optimisation est un des outils centraux de la microéconomie qui est basée sur le principe de la rationalité et de l’optimisation des comportements, le profit pour les entreprises, et l’utilité pour les consommateurs.

En mécanique on distingue trois formes d'optimisation[1] :

  • l'optimisation de taille ou optimisation paramétrique, qui consiste à optimiser des dimensions (longueur, épaisseur, diamètre, ...) de la structure mécanique ;
  • l'optimisation de forme, qui consiste à optimiser l'enveloppe d'une pièce sans changer la topologie, c'est-à-dire sans ajouter de trous dans la pièce ;
  • l'optimisation topologique, qui consiste à faire varier la répartition de matière au sein d'un volume de départ donné.

Historique

Historiquement, le premier terme introduit fut celui de programmation linéaire, inventé par George Dantzig dans les années 1940. Le terme programmation dans ce contexte ne réfère pas à la programmation informatique (bien que les ordinateurs soient largement utilisés de nos jours pour résoudre des programmes mathématiques). Il vient de l’usage du mot programme par les forces armées américaines pour établir des horaires de formation et des choix logistiques, que Dantzig étudiait à l’époque. L’emploi du terme « programmation » avait également un intérêt pour débloquer des crédits en une époque où la planification devenait une priorité des gouvernements.

Notes et références

  1. Catherine Vayssade, « Optimisation mécanique, Optimisation topologique », 2004. Consulté le 24 décembre 2008

Voir aussi

Articles connexes

Bibliographie

  • (fr) Michel Minoux, Programmation mathématique - théorie et algorithmes, éditions Dunod, 1983 (ISBN 2040154876)
  • (en) Encyclopedia of Optimization, Floudas, Christodoulos A.; Pardalos, Panos M. (éditeurs), 2e édition, 2009 (ISBN 978-0-387-74758-3)

Liens externes

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Optimisation (math%C3%A9matiques) ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Minimisation d'une fonction de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Minimum d'une fonction — Optimisation (mathématiques) En mathématiques, l optimisation est l’étude des problèmes qui sont de la forme : Étant donné : une fonction d’un ensemble A dans l ensemble des nombre réels Rechercher : un élément x0 de A tel que pour …   Wikipédia en Français

  • Fonction indicatrice (analyse convexe) — Pour les articles homonymes, voir Fonction caractéristique. En mathématiques, et plus précisément en analyse convexe, la fonction indicatrice d une partie P d un ensemble est la fonction qui s annule sur P et prend la valeur sur le complémentaire …   Wikipédia en Français

  • Fonction Récursive Primitive — Une fonction récursive primitive est une fonction définie principalement à l aide de fonctions primitives de récursion et de composition. Ces fonctions constituent un sous ensemble des fonctions récursives. Elles ont été initialement analysées… …   Wikipédia en Français

  • Fonction recursive primitive — Fonction récursive primitive Une fonction récursive primitive est une fonction définie principalement à l aide de fonctions primitives de récursion et de composition. Ces fonctions constituent un sous ensemble des fonctions récursives. Elles ont… …   Wikipédia en Français

  • Fonction récursive primitive — Une fonction récursive primitive est une fonction définie principalement à l aide de fonctions primitives de récursion et de composition. Ces fonctions constituent un sous ensemble des fonctions récursives. Elles ont été initialement analysées… …   Wikipédia en Français

  • Minimisation — Optimisation (mathématiques) En mathématiques, l optimisation est l’étude des problèmes qui sont de la forme : Étant donné : une fonction d’un ensemble A dans l ensemble des nombre réels Rechercher : un élément x0 de A tel que pour …   Wikipédia en Français

  • Effort sur une voile — Exemple d effort du vent sur différents types de voile de voiliers classiques lors d une régate à Cannes en 2006. Le principe d une voile est de récupérer l énergie du vent et de la transmettre au bateau. L effet propulsif est réparti sur toute… …   Wikipédia en Français

  • Conditions d'optimalité (dimension finie) — En optimisation mathématique, les conditions d optimalité sont un ensemble d équations, d inéquations (i.e., des inégalités) et d expressions diverses (e.g., la semi définie positivité de matrices sur des cônes) vérifiées par une solution d un… …   Wikipédia en Français

  • Algorithme proximal (optimisation) — En analyse numérique et plus précisément en optimisation mathématique, l algorithme proximal (ou algorithme du point proximal) est un algorithme itératif de calcul d un minimum d une fonction convexe semi continue inférieurement propre. Si la… …   Wikipédia en Français

  • Algorithme du gradient — L algorithme du gradient désigne un algorithme d optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l espace des n uplets de nombres réels,… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”